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Abstract

In this paper, we exploit plant-level data for U.S. manufacturing for
the 1970s and 1980s to explore the connections between changes in
technology and the structure of employment and wages.  We focus on the
nonproduction labor share (measured alternatively by employment and
wages) as the variable of interest.  Our main findings are summarized as
follows: (i) aggregate changes in the nonproduction labor share at
annual and longer frequencies are dominated by within plant changes;
(ii) the distribution of annual within plant changes exhibits a spike at
zero, tremendous heterogeneity and fat left and right tails; (iii)
within plant secular changes are concentrated in recessions; and (iv)
while observable indicators of changes in technology account for a
significant fraction of the secular increase in the average
nonproduction labor share, unobservable factors account for most of the
secular increase, most of the cyclical variation and most of the cross
sectional heterogeneity.   
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     1  Recent research investigating these changes includes Juhn, Murphy and
Topel (1991),  Davis and Haltiwanger (1991), Katz and Murphy (1992), Juhn,
Murphy and Pierce (1993),  and Berman, Bound and Griliches (1994).  Note that
the return to education fell during the 1970s but this has been attributed to
the changes in the relative supply of college educated workers over this
period (see, e.g., Katz and Murphy, 1992 for extensive discussion of these
issues).
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I. Introduction

Over the course of the past several decades there have been

significant changes in the structure of wages and employment in the U.S.

economy.  Rising wage inequality has been accompanied by an increase in

the return to experience over the 1970s and 1980s and an increase in the

return to education over the 1980s.  Conformable changes in relevant

quantities suggest that these price changes reflect changes in the

relative demand for skilled workers: employment, participation, and

unemployment for workers in the upper half of the wage distribution have

been relatively stable while unemployment and withdrawal from the labor

force have increased substantially for workers in the lower part of the

wage distribution.  These changes in the overall U.S. labor market are

particularly evident in changes in the structure of the workplace in

U.S. manufacturing.  Relative to the 1960s, the typical manufacturing

worker in the late 1980s is more educated and is more likely to be a

professional, manager or technical worker and less likely to be an

operator or laborer.1  



     2  Several aspects of our study distinguish our analysis from the relatively
few recent studies that exploit the establishment-level data to investigate
the connection between technology, wages and employment (see, e.g., Davis and
Haltiwanger, 1991; Dunne and Schmitz, 1995; Doms, Dunne and Troske, 1995; and
Bernard and Jensen, forthcoming.  First, we provide a comprehensive
characterization of the timing, heterogeneity and concentration of plant-level
changes in the employment and wage structure in the context of investigating
the contribution of observable changes in technology.  As part of this, a key
feature of our study is the documentation and analysis of the strong
connection between the low frequency structural changes in the employment and
wage structure at the plant with the cyclical dynamics.  Second, we
investigate the respective contributions of continuing plants and entry and
exit.  Consideration of the role of entry and exit is important in this
setting since many models of technology adoption hypothesize that new
technology will be introduced primarily by entering plants that in turn
displace exiting outmoded plants.
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The most prominent current explanation for the changing relative

demand for skilled workers is that the adoption of new sophisticated

capital equipment and the introduction of flexible manufacturing methods

has raised the demand for more highly educated and skilled workers.  An

alternative competing explanation is that there have been product demand

changes towards goods requiring more skilled labor (at least in part

stemming from an increasingly integrated world economy).  While there

have been numerous studies in the recent literature seeking to identify

the sources of these labor market changes, the verdict is still out

since most of the evidence to date is indirect.  Much of the existing

analysis exploits household data which do not permit direct examination

of the alternative explanations of technology adoption or detailed

product demand changes.  In contrast, in this paper we exploit

longitudinal establishment-level data for the U.S. manufacturing sector

covering the 1970s and the 1980s which contains a wealth of information

about the changing characteristics of individual establishments:

employment and wages by worker type (production and nonproduction

workers), capital intensity, R&D intensity, detailed indicators of

advanced technology adoption, and detailed industry.2  These data permit

a much more direct examination of the possible explanations for the

change in the relative demand for skilled workers.



     3  The use of industry-level data on production and nonproduction workers to
analyze the relative demand for skilled workers has a long history in labor
economics.  Table 3.7 in Hamermesh (1993) lists over 20 studies using such
data for this purpose.

     4  In this regard, our approach and analysis are in the spirit of the ideas
stressed in the recent literature that restructuring and reallocation are
concentrated in economic downturns (e.g., Davis and Haltiwanger, 1990; Hall,
1991; Caballero and Hammour, 1994; Mortensen and Pissarides, 1994; and
Campbell, 1995.  However, in this case, we focus more on the nature of within
plant restructuring at business cycle frequencies than on the between plant
reallocation of jobs that has been the focus of this recent literature.  
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While our data have a wealth of information about employer

characteristics, the primary information on worker characteristics are

employment and wages broken out separately for production and

nonproduction workers.  Using this information, Figure 1 graphs the

nonproduction labor share in terms of employment and wage shares and

illustrates two key features of the aggregate data.  The first is the

striking upward trend in the nonproduction labor share.  This increase

has been interpreted in the recent literature (e.g., Berman, Bound and

Griliches, 1994; and Goldin and Katz, 1996) as an important indicator of

the overall changes in the structure of the workplace in manufacturing.3 

The second key feature of the nonproduction labor share series seen in

Figure 1 is that it exhibits an asymmetric pattern over the business

cycle.  Sharp increases in the share of nonproduction labor during

economic downturns are only mildly offset by decreases during

recoveries.  Consequently, almost all of the long run increase in

nonproduction labor share that occurs over the 16 year period, occurs in

periods that manufacturing sector employment is contracting.  The strong

connection between the structural changes and the cyclical patterns in

the aggregate data has been neglected in the recent literature but is a

fundamental part of our analysis.4

Throughout this paper, we follow this recent literature and focus

on the nonproduction labor share (both in terms of employment and in
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terms of wages) as our variable of interest.  Although this is dictated

by data limitations,  we think the use of this variable for this purpose

is appropriate for a number of reasons.  First, as in the recent

literature, we view the nonproduction labor share variable as a basic,

though admittedly imperfect, measure of plant-level workforce skill.  It

is well documented that nonproduction workers are more highly paid and

more educated than production workers (Davis and Haltiwanger, 1991;

Berndt, Morrison, and Rosenblum, 1992).  In addition, the growth in

nonproduction labor in manufacturing has been in the higher skill

occupations such as professionals (including scientists, engineers, and

computer programmers) and managerial occupations, while the decline in

production labor has been primarily in lower skill occupations such as

operatives and laborers  (Davis and Haltiwanger, 1991; Berman, Bound and

Griliches, 1994).  Second, we view changes in the nonproduction worker

share as more broadly reflecting changes in the way plants produce

goods.  Goldin and Katz (1996) document a variety of changes in the

production process over the twentieth century and their effect of the

types of workers used in manufacturing production.  Similarly,

Ichniowski and Shaw (1995) document and analyze changes from assembly-

lines to team production and the impact of this change on workplace

organization.  In addition, Kremer (1993) argues that changes in the

complexity of goods produced in turn affect the workforce requirements

of the plant.  In short, we recognize that plant-level changes in the

nonproduction labor share may represent more than simply skill changes

in the workforce and we attempt to take this broader perspective into

account in interpreting our results.   

  With these alternative interpretations in mind, this paper

examines a number of issues concerning both the microeconomic dynamics

of nonproduction labor share changes and the relationship between

technology and changes in the skill of the workforce.  The first issue
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we address empirically is whether the observed aggregate changes in the

nonproduction labor share at high and low frequencies reflect a general

upward shift in workforce skill (a within plant effect), a reallocation

of the employment from continuing low skill to high skill plants (a

between plant effect), or entering high skill plants displacing exiting

low skill plants (a net entry effect).  The results of such basic

decompositions can potentially shed considerable light on a variety of

competing hypotheses.  The hypothesis that trade and other factors have

generated a shift in demand towards products that are skill intensive

implies that the observed change should primarily be a between plant

phenomenon.  Demand shifts towards high skill intensive products also

potentially have implications for the contribution of net entry.  The

skill biased technical change hypothesis implies that the observed

changes are driven by individual plants retooling their production

processes (a within plant phenomenon) or that new technology is

introduced by entering plants that displace outmoded exiting plants (a

net entry phenomenon).  Further, understanding whether new technology is

introduced via retooling of existing plants or via the entry of new

plants is of fundamental importance in distinguishing between

alternative classes of technology adoption models. 

The second set of issues we address concerns the timing,

heterogeneity and concentration of plant-level changes in the

nonproduction labor share.  We document the magnitude, concentration,

persistence, and cyclicality of the distribution of the plant-level

nonproduction share changes.  In addition, we document the underlying

job creation and destruction dynamics within and between plants by

worker type.  While we know from recent studies of plant-level

employment dynamics that there is tremendous dispersion in the

employment growth rate distribution, this need not translate into

dispersion in nonproduction share changes. More generally, the
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characterization of the distribution is important for understanding the

underlying forces driving plant-level changes in nonproduction share. 

Recent characterizations of plant-level investment (e.g., Doms and

Dunne, 1994; Cooper, Haltiwanger and Power, 1995; and Caballero, Engel

and Haltiwanger, 1995b) document the importance of lumpy investment

spikes in a manner consistent with nonconvexities in capital adjustment

costs.  For our purposes, nonconvexities in the adjustment costs for

adopting new technology (which may be associated with capital

adjustment) in the presence of biased technical change in turn imply

lumpy adjustment in worker mix at the plant level.  In addition, we are

interested in the respective contributions of positive and negative

changes in nonproduction labor share at the plant level in accounting

for the observed aggregate changes.  As will become apparent, the

observation of very large positive and negative changes in workforce

skill, as measured by nonproduction labor share, raises a variety of

questions regarding the nature of the bias in technical change.

The last and most important issue we address is the connection

between plant-level indicators of technology adoption and changes in the

employment structure at both high and low frequencies.  We evaluate the

contribution of observable factors such as changes in equipment,

structures, R&D, and the adoption of advanced manufacturing technologies

to high and low frequency changes in the nonproduction labor share.  Of

particular interest is whether these observable factors can account for

the concentration of the long run changes in economic downturns.  

The outline of the paper is as follows.  The next section

considers theoretical issues that help frame the empirical analysis that

follows.  The intent here is to characterize the relevant driving forces

as suggested by the existing theoretical literature.  Section III

briefly characterizes the data we use.  In addition, in this section we

characterize the available evidence on the relationship between the
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nonproduction labor share measure and workforce skill.  Sections IV, V

and VI provide a detailed characterization of the high and low frequency

plant-level production and nonproduction worker dynamics.  Section VII

reports the results from our examination of the connection between

observable indicators of technology adoption and changes in the

nonproduction worker share.  Section VIII summarizes our main findings. 

II.  Theoretical Considerations

A.  Within Plant Changes in Workforce Skill

In considering the connection between technical change and

workforce skill, we focus on the role of observable indicators of plant-

level technology adoption.  This focus is motivated by both recent

research and the popular perception that the demand for skilled workers

has increased relative to that for unskilled workers as manufacturing

plants have installed sophisticated capital equipment.  While this

perspective motivates much of our analysis, we interpret the

adoption/retooling decision in a very broad sense.  Beyond considering

technology adoption via the purchase and installation of sophisticated

capital equipment, we view technical change as encompassing a broad

range of changes in the production and organizational structure of the

plant.  The broader interpretation is closely linked to the concept of

organizational capital stressed by Hall (1991).  Organizational capital

reflects the myriad of factors that characterize the production process

of an individual plant including the amount and type of capital used,

the design and layout of the production process, and the organization of

the workforce in teams of managers, office workers, and production

workers.   

Given this broad definition for changes in "capital," consider the

implications for changes in the skill of the workforce at the plant. 



     5  This specification of short run cost minimization is consistent with a
fully specified dynamic profit maximization model in which individual
producers endogenously adopt new technologies.  All we are doing here is
characterizing how the variable factors of production are determined for a
given state of technology and output.  In a fully specified dynamic model
determining Z  (our index of the state of technology), incurring costs of
adoption in the current period would (perhaps with some probability) yield an
updated Z in the subsequent period.  The costs of adoption may be proportional
to current output so that times of adoption affect the scale of operations and
in turn the demand for skilled and unskilled labor.  This is captured in the
short run cost minimization since we are controlling for the level of output. 
See the discussion below for alternative models of the dynamics of Z.  

     6  The underlying assumption is that there is some additional fixed factor
other than Z. 
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Treating skilled and unskilled labor as variable factors of production,

the optimal "skill mix" can be determined by short run cost minimization

for given output and a given state of technology  (where the latter is

treated as a quasi-fixed factor for this purpose).5  That is, producer i

minimizes ws
tLsit + wu

tLuit subject to yit = F(Zit,Lsit,Luit).  Production, yit, is

an increasing function of three factors: the "capital" in which the

adopted state of technology is embodied, Zit, and two labor inputs

(skilled, Ls
it, and unskilled labor, Luit, --treated as variable factors of

production).  F(") is assumed to be strictly concave.6  The producer

takes wages of skilled workers, ws
t, and unskilled workers, wut, as given. 

Optimal skilled and unskilled labor inputs are determined by the

standard condition equating the ratio of the marginal products to the

ratio of the wages of skilled to unskilled labor, along with the

production relationship for given output and Z.  For our purposes, it is

useful to express the implied optimal skill mix, Mit, in a form familiar

in empirical analysis:
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While the skill mix is decreasing in the relative wages of skilled to

unskilled workers, the sign and magnitude of the Z-skill complementarity

(mz) depends on the nature of the skill bias in technology adoption. 

Short run nonhomotheticity (my) reflects changes in the skill mix

induced by changes in the scale of operations for given Z.  

Given non-zero Z-skill complementarity, a key question is, what

determines the dynamics of Z.  A large recent literature is devoted to

endogenizing the technology adoption decision.  One important class of

models are vintage capital models as in Solow (1960), Chari and

Hopenhayn (1991), Cooper and Haltiwanger (1993), Cooley, Greenwood and

Yorukglu (1994), and Cooper, Haltiwanger and Power (1995).  In these

models, Z is characterized as physical capital in which technological

progress is embodied.  A closely related but distinct class of models

characterizes the dynamics of Z via the endogenous innovation and

imitation of technologies (e.g., Jovanovic and MacDonald, 1994;

Andolfatto and MacDonald, 1993).  In all of these models, individual

producers must incur costs (both direct and indirect) to acquire and

implement new technology.  In addition, individual producers are subject

to idiosyncratic shocks (e.g., demand, cost, productivity and possibly

shocks in the success of adoption).  It is the presence of adoption

costs, along with idiosyncratic shocks, that implies variation in

technology across producers. 

A number of factors influence the frequency and timing of adoption

at the plant level.  First, as noted in the introduction, recent studies

of plant-level investment dynamics provide support for the hypothesis

that there are nonconvexities in the adjustment costs for capital.  In

the presence of (potentially related) nonconvexities in the costs of

adopting new technologies, technology adoption at the plant level will

be lumpy (i.e., infrequent and large changes will be observed).  Fixed

costs of adoption imply that even with steady improvements in the



     7  This prediction is derived in a setting with an exogenous constant pace
of technological progress in the leading available technology.  Even in this
setting, the adoption cycle will not be deterministic given that plants are
subject to idiosyncratic and common shocks.  See Proposition 2 in Cooper,
Haltiwanger and Power (1995) for a formal derivation of this prediction. 

     8  See Andolfatto and MacDonald (1993) for a discussion of large, infrequent
technological improvements.  In addition, they incorporate a related source of
discrete adjustment by specifying that the probability of successfully
innovating is less than one.  Thus, individual producers may attempt to
innovate for several periods prior to achieving success.

     9  Formally, this can be modeled as a cost of adoption that is proportional
to current output.
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leading available technology, individual producers will only

infrequently update their technologies.  In this spirit, Cooper,

Haltiwanger and Power (1995) demonstrate in a model in which plants

periodically lock-in at a particular state of technology by installing a

specific vintage of capital, the probability of retooling will be

increasing in the time since the prior retooling.7

An additional source of lumpy technology adoption is erratic

improvements in the leading available technology.  Major technological

breakthroughs in individual industries may be infrequent.8  The presence

of fixed costs in an environment with erratic improvements in the

leading edge technology implies that individual producers may forego

minor improvements  (or at least delay until improvements have

sufficiently accumulated).

A second key factor influencing the timing of adoption is the

nature and persistence of the demand and cost shocks that generate

fluctuations in profitability for a given state of technology.  One

reason these shocks are important is that the adoption costs may take

the form of lost output or productivity due to the disruption in

activity during retooling and reorganization.9  The most natural

interpretation of these disruption costs is that the plant (or parts of

the plant) may need to be shutdown during retooling.  Alternatively, in



     10  Arguments along these lines are developed in Hall (1991), Cooper and
Haltiwanger (1993), and Cooper, Haltiwanger and Power (1995) in terms of
characterizing the response of retooling/reorganization to exogenous aggregate
shocks.  Andolfatto and MacDonald (1993) make a related argument in a model
with endogenous aggregate fluctuations.  

     11  See Proposition 5 in Cooper, Haltiwanger and Power (1995).
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interpreting the problem more broadly, these costs could be thought of

as the substitution of managerial talent (or other resources) away from

production activities to reorganization/retooling activity.  The

presence of such disruption costs provides a potential rationale for

retooling (and associated skill mix changes) to be concentrated in

economic downturns since the opportunity cost from the disruption in

activity induced by the retooling process is low at such times.10  Even

in the presence of such disruption costs, there still may be incentives

for procyclical technology adoption if aggregate shocks to profitability

are serially correlated.  In the presence of positively serially

correlated aggregate shocks, a high current shock to profits will imply

higher future profits.  This can yield procyclical retooling if the

disruption costs are sufficiently small since a producer would

prefer to have a new technology available when other factors are

generating high profits.11  

In short, plant-level skill mix changes will reflect changes

in the state of technology, relative wages, and changes in the

scale of operations (nonhomotheticity).  Changes in the state of

technology may be lumpy in the presence of nonconvexities in

adjustment costs or erratic improvements in the leading available

technology.  The timing of lumpy technology adjustment (and

associated skill mix changes) will be influenced by a number of

factors including the rate of advance of the leading technology,

the rate of depreciation of the installed technology, the nature

of the costs of adoption and the nature and persistence of

shocks.  



     12  This decomposition is closely related to, but distinctly different from,
the decomposition used by Berman, Bound and Griliches (1994) among others. 
Their decomposition involves no covariance term since they used average
(across time) employment shares in the within component and average skill
intensities in the between component.  We have chosen to represent the
decomposition in this alternative fashion for two reasons.  First, our
decomposition easily incorporates the role of entering and exiting plants
while the alternative does not.  Second, we think it is interesting to
consider separately the contribution of the covariance component.  Note that
in our decomposition, for the between and the net entry terms, each component
is deviated from the overall initial average skill mix.  Thus, the increase in
the employment share of a plant contributes positively to the overall change

(continued...)
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B.  Within Plant vs. Between Plant Changes in the Skill Mix

The discussion thus far has emphasized changes in the skill

mix within a plant driven by a variety of possible forces.  In

the aggregate (total economy or industry level), observed changes

in the skill mix will reflect within plant changes as well as

changes in the employment shares across plants.  That is, using

the notation from the previous section, changes in the aggregate

skill mix can be decomposed as follows:

where (consistent with the notation used above) Mt represents the

aggregate skill mix in period t (in practice, we use the ratio of

nonproduction worker employment to total employment in the

exercises which follow), Lt represents aggregate total employment

and the corresponding plant-specific terms are defined

accordingly.  The first term represents the within plant

component for continuing plants between period t-1 and t, the

second the between plant component for continuing plants, the

third term a covariance component for continuing plants and the

last two terms reflect the contribution of entry and exit,

respectively.12  Much of our discussion thus far has referred to



     12(...continued)
only to the extent that it has higher than the average initial skill mix.
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the first component of this decomposition:  the within plant

component of changes in the skill mix.

The between plant component arises from the job reallocation

across plants induced by sectoral and idiosyncratic cost, demand,

or productivity shocks.  The above decomposition makes clear that

between plant job reallocation is only relevant for changes in

the aggregate skill mix if the underlying forces changing total

plant-level employment are correlated with the skill mix at the

plant.  Thus, for example, if the demand for products produced by

technologies that are skill intensive increase 

disproportionately then this can lead to an increase in the

aggregate skill mix even if there are no changes in within plant

skill intensities.  This may have arisen from increased

international competition that shifted U.S. production away from

low skill intensive products to high skill intensive products.   

The process of technology adoption itself is a factor

linking between and within plant changes in the skill mix.  For

example, if adoption is skill biased and adoption leads to an

increase in employment, then these combined effects will produce

a positive covariance.  More generally, however, the adoption of

technology will have industry and general equilibrium effects

that generate both between and within plant skill mix changes. 

First, consider the implications for changes in relative wages

induced by biased technical change.  Suppose for the moment that

most industries exhibit skill biased technical change.  This

skill biased technical change will increase the demand for

skilled labor and potentially increase the relative wages for

skilled workers.  For plants in industries without skill biased

technical change or for plants that have not adopted the latest

technology, the change in the relative wages will induce a



     13 Andolfatto and MacDonald (1993) emphasize learning externalities that may
act to induce bunching of technology adoption as another factor influencing
the evolution of the cross sectional distribution.

14

decrease in the skill mix.  For plants that are adopting new

technology that is skill biased, the relative wage change will

dampen their skill mix change.

Another relevant industry equilibrium effect to consider is

that with stable industry demand, technological progress will

yield a falling industry price.  Depending on the elasticity of

industry demand, this may yield a decrease in industry

employment.  In terms of the within industry dynamics, the impact

is analogous to the between plant effects discussed above (e.g.,

plants that have not adopted will decrease their employment

share).

In short, there will be an endogenous evolution of the cross

sectional distribution of technologies (or equivalently, a cross

sectional distribution of vintages of "capital") within the same

industry in this class of models.  The presence of idiosyncratic

shocks and adoption costs implies that not all plants will have

adopted the latest technology in any given period.  Further,

common aggregate shocks as well as the distribution of

idiosyncratic shocks affect the evolution of the cross sectional

distribution.13  The evolution of the cross sectional

distribution of technologies in the presence of biased technical

change in turn generates rich dynamics in the cross sectional

distribution of skill mix changes (the within plant component)

and employment shares (the between plant component) which we

attempt to characterize empirically. 

C.  Entry and Exit

Another potentially important contributing factor that

appears in the above decomposition is the role of entry and exit. 
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The contribution of net entry may reflect a variety of

alternative factors.  First, a large class of relevant models

(e.g., Campbell, 1995; Caballero and Hammour, 1994; Lambson,

1991) points towards entry as being the primary way in which new

technology is introduced into the economy.  This class of models

is similar in spirit to the within plant technology adoption

models discussed above.  In this type of model, new plants incur

a fixed cost to adopt the latest technology and in turn old

plants with outdated technologies are induced to exit.  If

technology is skill biased, then skill mix changes will be

observed via the entry and exit process.  

A second factor influencing the contribution of the net

entry component of equation (2) is that changes in product demand

will imply differential patterns of net entry across industries. 

If product demand changes are correlated with the skill

intensities of the production processes (e.g., demand for high

skill products increases), then this will yield a systematic

contribution of net entry to the aggregate skill mix change.  In

our empirical analysis, we characterize the respective

contributions of entry and exit to changes in the skill mix and

attempt to distinguish between the various interpretations of the

contribution of entry and exit.    

D.  Other Frictions

The models discussed thus far emphasize one type of

friction, retooling costs associated with introducing a new

technology or fixed costs of opening a new plant.  Since we are

interested in exploring the implications of technological

adoption for job dynamics, it is important to emphasize other

frictions that may be relevant for these changes.  The above



     14  Although the empirical work on labor adjustment costs suggests they are
most relevant for monthly and quarterly data (e.g., Hamermesh, 1993; and
Caballero, Engel and Haltiwanger, 1995a).

     15  A closely related form of nonhomotheticity could arise if there is
overhead labor that consists mainly of nonproduction workers.
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discussion treats both skilled and unskilled labor as variable

factors of production.  This assumption seems reasonable given

that our data are at an annual frequency but even at an annual

frequency some labor adjustment costs (e.g., search, hiring,

firing) may still be relevant.14  This is especially important to

the extent that these frictions differ by the skill type of

workers.  Since it is often presumed that adjustment costs are

higher for skilled workers, any high frequency changes that we

observe in the skill mix may reflect these differential

employment adjustment costs rather than the factors we have

emphasized.  In terms of our analysis, these adjustment costs act

as a form of nonhomotheticity in the high frequency fluctuations

in the skill mix.15  In our empirical work, we attempt to

distinguish between these alternative explanations of changes in

the skill mix at high frequencies.  

     

III.  Data Description, Measurement Issues and An Empirical Road

Map

The data used in this study come from the Longitudinal

Research Database (LRD) which is a compilation of the plant-level

data from the Census of Manufactures (CM) and the Annual Survey

of Manufactures (ASM) for the period 1972 to 1988.  For each

plant-year observation, the data contain detailed information on

production and cost variables such as employment, shipments, and

capital investment.

A. Nonproduction Labor Share as a Measure of Skill
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As we briefly discussed in the introduction, a key issue in

this paper is how we measure workforce skill.  The data allow us

to disaggregate employment into two types of workers --

production workers and nonproduction workers.  Production workers

include workers "engaged in fabricating, processing, assembling,

inspecting, receiving, storing, handling, packaging, warehousing,

shipping, maintenance, repair, record keeping, janitorial, and

guard services up through the line-supervisor level." 

Nonproduction employees are all other workers including "sales,

sales delivery, clerical, management, professional, technical

employees and construction employees." (U.S. Census Bureau 

(1991), p. A-1). Given these worker classifications, we construct

two different plant-level measures of skill.  The first is the

ratio of nonproduction workers to total employment. The second,

is the ratio of wages paid to nonproduction workers to total

payroll.  This latter measure is of interest for a number of

reasons.  First, the changes in the demand for more skilled labor

may be reflected in changes among production and among

nonproduction workers rather than in shifts between production

and nonproduction workers.  Examining the nonproduction worker

wage share provides some perspective on this problem.  Second, a

shift in demand towards skilled workers will be understated in

examining the ratio of nonproduction workers to total employment

given that the implied increase in the skill premium will dampen

the employment changes.  Third, the cost share emerges as the

relevant dependent variable when considering specific functional

forms (e.g., translog) of the cost function.  Since we exploit

such specifications in the analysis in section VII it is useful

to characterize the skill mix changes from this perspective as

well. 

One obvious question is whether these two alternative

measures (employment and cost share based) of the nonproduction

labor share are reasonable measures of skill.  One piece of



     16 One factor that may be important in considering these wage differences is
if workers use different means to acquire human capital.  For example, if
nonproduction workers acquire most of their human capital by attending school,
while production workers purchase training from their firm through lower
wages, then these wage differentials may simply reflect the difference in how
workers pay for human capital.  However, evidence from the training literature
suggests that this is not the case.  First, white collar workers are more
likely to receive training than blue collar workers (Amirault, 1995; Altonji
and Spletzer, 1991).  Second, even among production workers, it is the most
educated production workers who are the most likely to receive training (Lynch
and Black, 1995).
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evidence that suggests the production/nonproduction worker

distinction is closely linked to skills is the wages paid to

these workers.  To the extent that the labor market in U.S.

manufacturing can be viewed as competitive, then workers with a

higher marginal product (more skill) should receive higher wages. 

Davis and Haltiwanger (1991), using data from the LRD from 1963

to 1986, show that the average wage of nonproduction workers is

$12.86 per hour, while the average wage of production workers is

$8.56 per hour.  Davis and Haltiwanger also show that the

difference between nonproduction worker and production worker

wages rises by 29 percent between 1975 and 1986.  These numbers

suggest that, at least based on wages, nonproduction workers are

more skilled than production workers, and also the return to

being a nonproduction worker has increased over this period 

(which may reflect either an increased skill premium or increases

in the relative skills of nonproduction workers).16  

An alternative, commonly used, measure of skill is

education.  To see whether plants with relatively more

nonproduction worker labor also employ more educated workers, we

use data from the Worker-Establishment Characteristics Database

(WECD) to examine the educational distribution of workers within

plants.  The WECD is a cross-sectional employee-employer matched

database created at the U.S. Census Bureau (see Troske (1995) for

details).  Using these data we find that only 7.4 percent of

workers in plants in the lowest nonproduction share quartile have



     17  These results also somewhat alleviate concerns that it has become
increasingly difficult for establishments to classify workers into production
and nonproduction categories.  
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Bachelors degrees while 21.1 percent of workers in plants in the

highest nonproduction share quartile have Bachelors degrees.  In

addition, Berman, Bound and Griliches (1994) using data from the

1987 CPS show that only 17 percent of blue collar workers have

more than a high school degree, compared with 35 percent of

clerical workers, 70 percent of sales workers and 78 percent of

managers and professionals.  Finally, Davis and Haltiwanger

(1991), using data from the CPS from 1973 to 1987 show that, in

U.S. manufacturing, the percent of hours worked by individuals

with less than a high school diploma falls from 33 percent to 20

percent, while the percentage of hours worked by individuals with

a college degree rises from 11 percent to 18 percent.  

Another means of evaluating the link to skill upgrading is

to consider the occupational changes within these groups.  Using

CPS data for the 1970s and 1980s,  Berman, Bound and Griliches

(1994) show that, both in levels and changes, the white collar

share of total manufacturing employment in the CPS is very

similar to the nonproduction labor share generated from the ASM.

The discrepancy between the white collar share and the

nonproduction worker share is never greater than two percentage

points over the 1970s and 1980s.  It is striking that asking

establishments to classify workers and asking workers to classify

themselves yields such similar results.17  Given the tight link

between the production/nonproduction and blue collar/white collar

distinctions, Berman, Bound and Griliches (1994) show that within

the white collar occupations there was an increase in the

percentage of managers, professional and technical workers, and a

decrease in the percent of clerical workers.  They also show that

within the blue collar occupations there was an increase in the



     18  Davis and Haltiwanger (1991), also using CPS data, document that much of
the secular decrease in blue collar workers in the 1980s is accounted for by a
sharp decrease in operatives and laborers concentrated in the 1979 to 1982
period.  This latter finding is significant given that much of the overall
secular increase in the nonproduction labor share depicted in Figure 1 is
concentrated in the 1979 to 1982 period.  
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percentage of craft workers and a decrease in the percentage of

operatives, laborers and service workers.  Thus, the shifts among

white and blue collar workers that accompanied the overall shift

towards white collar workers are consistent with skill upgrading

on an occupational basis.18

B. Data Sets

Our study uses three main subsets of the LRD.  The first

subset is the linked ASM which is an unbalanced sample of

manufacturing plants for the years 1972 to 1988.  This is the

same data set used in Davis and Haltiwanger (1992) and Davis,

Haltiwanger and Schuh (1996).  The advantage of this data set is

that it is a representative sample of plants in U.S.

manufacturing including entering and exiting plants.   The

disadvantage of this data set is that the ASM is a five year

rotating panel which makes longitudinal analysis across ASM

panels difficult.  Accordingly, the second data set we use is a

subset of the linked ASM data and includes plants that appear in

the ASM in all years.  We refer to this data set as the balanced

panel.  This data set has 11,239 plants and covers approximately

38 percent of average annual manufacturing employment over the

period 1972 to 1988.  Figure 2 shows the nonproduction labor

share in terms of employment and payroll for total manufacturing

and the balanced panel over the 1972 to 1988 period.  In both

graphs, the basic trend in the balanced panel is virtually

identical to total manufacturing.  The third data set is based on

the 1972, 1977, 1982 and 1987 CM’s.  It is a linked data set of

the universe of plants which appear in each census year.  This
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data set is similar to that used in Dunne, Roberts, and Samuelson

(1989) and is used here to measure entry and exit.  Appendix A

provides detailed explanations and formulas for all variables

used in the study.  

In addition to the above data sets, we also utilize

supplementary data on research and development expenditures

(R&D), technology adoption, and central administrative office

(CAO) employment.  The R&D data come from the National Science

Foundation’s Annual R&D Survey which is a firm-level survey of

all major R&D performers in the U.S.  Using these data, we

construct measures of the change in the R&D stock of the firm and

match this firm-level information to the plant-level data.  The

information on technology use comes from the 1988 Survey of

Manufacturing Technology.  This survey contains data on the use

of 17 manufacturing technologies including robots, local area

networks, computer-automated design and flexible manufacturing

cells.  Both of these data sources are used to generate proxies

for plant-level technology adoption that, combined with our data

on workforce composition, output, and capital, are used to model

capital-skill complementarity.  Finally, the CAO data contain

information on the employment of nonproduction labor in

nonmanufacturing facilities that support the manufacturing

establishments of the firm.  These include headquarters, research

and development laboratories, and other nonmanufacturing

facilities.  We use these data to examine whether changes in

nonproduction labor share in manufacturing plants are related to

changes in the share of firm employment in CAOs.

C. An Empirical Road Map

Our empirical analysis of the connection between plant-level

technological adoption and employment dynamics proceeds in two

stages.  First (in sections IV-VI), we undertake a comprehensive

examination of the time series evolution of the plant-level
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distribution of employment changes across worker types.  Second 

(in section VII), we investigate the connection between

observable dimensions of plant-level changes in technology and

the nonproduction labor share.  Our motivation for the first

stage is twofold.  First, the aggregate (industry-level) changes

in employment across worker types may provide a misleading

characterization of the plant-level dynamics.  Second, a change

in the workforce composition at an individual plant is itself an

index of a change in the state of technology at the plant.  As

such, we can potentially learn much about the dynamics of

technology adoption by focusing on the within and between plant

dynamics of workforce restructuring. 

IV.  Decomposition of Nonproduction Labor Share Changes

In this section, we present basic decompositions of the

changes in the nonproduction labor share focusing on the relative

contributions of within plant changes, between plant changes, and

net entry, to the aggregate change in the nonproduction labor

share.  The top half of Table 1 presents the results from the

decomposition given in equation (2) for the 1972-87 long

difference change in nonproduction labor share using the Census

of Manufactures in these two years as well as the intervening

intercensal changes.  The largest component is the within plant

component which accounts for 43 percent of the total change in

the nonproduction labor share from 1972 to 1987.  The dominance

of the within plant component is maintained for each of the

intercensal changes, although the between plant component becomes

somewhat more important in the 1977 to 1982 period (accounting

for more than 25 percent). The contribution of the covariance is

small and sometimes negative (less than 10 percent on average). 

As will become clear, underlying this relatively small covariance

term is tremendous heterogeneity in the nature of the covariation



     19 A recent study by Bernard and Jensen (forthcoming) has also analyzed
plant-level changes in the nonproduction labor share using a balanced panel of
plants with somewhat different conclusions so it is worthwhile to discuss the
sources of the differences.  Their methodology and data for calculating what
they denote as between and within effects are quite different from ours which
makes comparisons difficult.  To overcome these difficulties of comparability,
we have examined the Berman, Bound and Griliches (1994) (BBG for the remainder
of this footnote) type of decomposition for our balanced panel since the
methodology used by Bernard and Jensen is closer in spirit to the BBG type of
decomposition (although not the same given their treatment of ASM sampling
weights and measurement of employment and wage shares).  Using our balanced
panel, the magnitudes and the time series variation in the between and within
effects are very similar across the two decomposition (whether one uses an
employment-based or cost-based measure).  We have, however, noted some
important sensitivity to the subperiods over which one examines the
decomposition.  Bernard and Jensen focus on two subperiods: 1973-79 and 1979-
87.  They argue that the between plant effect is particularly important for
the latter period when one uses a cost-based measure.  We find a similar
result for this subperiod and for the cost-based measure as well, although
unlike their results, we always find that the within plant component
dominates.  Over the entire 1972-88 period, we find that the annual average
contribution of the between plant component to the overall change is about 1/3
using the cost-based measure and the BBG type of decomposition.  For the 1979-
87 period, the contribution of the between plant component is about 40 percent
using the cost-share measure and the latter decomposition.
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between changes in nonproduction labor share and changes in

employment shares.  The net entry component exhibits a somewhat

different pattern in the long difference (1972-87) than in the

five year changes.  In the long difference, the impact of net

entry is positive and substantial.  In contrast, in the five year

changes, the contribution of net entry is much smaller and the

impact of net entry is actually negative in the 1972-1977 period. 

We provide a more detailed discussion of the role of entry and

exit below. 

The lower half of Table 1 reports summary statistics for the

decomposition of annual changes in the nonproduction labor share

over the period 1972-88 using the entire ASM sample and our

balanced panel of continuing plants.19  The results for both the

ASM sample and the balanced panel echo those from the intercensal

analysis.  Both the within and the between components contribute

on average positively to the overall annual average change in the

nonproduction labor share with the within plant component
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dominating.  The dominance of the within plant component is

especially dramatic for the analysis using the entire ASM sample. 

The covariance term is negative and relatively small.  

Turning back to the contribution of entry and exit, at an

annual frequency, the net entry effect is positive but very

small.  On average, entering plants tend to have a slightly lower

nonproduction labor share than the initial nonproduction labor

share for all plants in the year prior to entry (the average

difference is -0.0038) and exiting plants have a substantially

lower nonproduction labor share than the average nonproduction

labor share of all plants in the year prior to exit (the average

difference is 

-0.0119).  Since entering plants have a higher nonproduction

labor share than exiting plants, net entry contributes positively

to the overall change.  However, entering plants only constitute

about 1.4 percent of employment and exiting plants only about 2.1

percent of employment at an annual frequency.  These small shares

imply that the overall contribution of net entry at an annual

frequency is small.      

In the long difference, however, entry and exit play a

substantial role.  To examine this issue in more depth, Table 2

reports the employment share and nonproduction labor share for

entering and exiting plants for the three intercensal periods and

the long difference.  Three main points emerge.  First, in the

three intercensal periods, the employment shares of entering and

exiting plants average about 12 percent.  However, in the long

difference, these shares rise to above 30 percent.  Second,

comparing the nonproduction labor share across entering and

exiting plants, entering plants generally have a higher

nonproduction labor share than exiting plants.  In the long

difference, the nonproduction labor share of entering plants

exceeds that of exiting plants by .0577.  This fact combined with

the fact that entrants accumulate a substantial share over the 15



     20 We estimate a simple descriptive regression of the nonproduction labor
share with controls for four-digit  industry, state, whether the plant is in
an SMSA, and size interacted with a dummy variable indicating whether a plant
is a recent entrant.  The results of these regressions are available upon
request. 
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year period explains why the net entry component is relatively

large in the long difference.

Third, as is true in the annual data, entering and exiting

plants have a lower nonproduction labor share than continuing

plants.  In the case of entering plants, this may be a bit

surprising since, as discussed in section II.C, it is often

conjectured that entering plants will have the latest

technologies and therefore should use more skilled workforces. 

This hypothesis neglects the fact that entrants are much smaller

than continuing operations and small plants generally have a

lower nonproduction labor share than large plants.  In results

not reported here, we compared similarly sized entering plants to

continuing plants, controlling both for industry and location.20 

In the case of large plants (more than 1000 employees), large

entrants had a higher nonproduction labor share than large

incumbents.  This was particularly evident in 1982 where the

nonproduction labor share of large entering plants exceeded the

nonproduction labor share of large continuing plants by .0456. 

However, smaller entrants still had a lower nonproduction labor

share than smaller incumbents.    

How do these findings relate to plant-level technology

adoption and workforce skill?  As we discussed in section II, if

the aggregate nonproduction labor share change is being driven by

technological upgrading of plants either through the entry-exit

process or through the retooling/reorganization of existing

plants, then either the within plant component and/or the net

entry component should contribute heavily to the observed rise in

the nonproduction labor share.  Over the long run, the within and



     21 Specifically, we decomposed the difference in the nonproduction labor
share between entering and exiting plants in the long difference (1972 to
1987) into the within industry, between industry, and covariance components. 
The unit of analysis for this exercise is a four-digit industry unlike the
decomposition given in (2) where the unit of analysis is the plant.  Thus, for
example, the within component is the difference in nonproduction labor share
between entrants and exiters at the industry level weighted by the initial
exiters’ share. 
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the net entry components jointly account for 80 percent of the

nonproduction labor share change.  However, it is important to

look more closely at the net entry component.  If the difference

in the nonproduction labor share between entrants and exiters

arises because entry is concentrated in high nonproduction labor

share industries while exit is concentrated in low nonproduction

labor share industries, then changes in product demand (that

induce entry and exit in this particular fashion) could generate

the net-entry effect.  To explore this possibility, we decomposed

the change in skill due to entry-exit over the 1972 to 1987

period into a within industry component, a between industry

component and a covariance term.21  We find that the within

industry component accounts for 55 percent of the change while

the between component accounts for 35 percent of the change (the

remainder is the covariance component).  Given this result and

the generally large within plant component, it is tempting to

conclude that the observed change in the aggregate nonproduction

labor share reflects skill-biased technological adoption. 

However, as will become apparent in the succeeding sections,

while this conclusion may be appropriate, the story is

considerably more complicated once one considers the timing and

heterogeneity in the nonproduction labor share changes across

plants.     

     

V.  Cyclical Dynamics of Nonproduction Labor Share Changes

A. Between vs. Within Decomposition



     22 Obviously, when we consider the balanced panel we miss the role of entry
and exit.  However, given the small role that net entry plays in accounting
for annual changes, this is not too great of a problem.
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We now turn our attention to investigating the cyclical

patterns of the nonproduction labor share changes.  We begin by

investigating the respective contributions of the between and

within plant components to the aggregate cyclical changes in the

nonproduction labor share.  The top panel of Figure 3 depicts the

annual aggregate changes and the components of the annual changes

from the decomposition for the balanced panel.22  Four results

stand out.  First, the dominance of the within plant component is

clearly evident.  Second, the nonproduction labor share change

exhibits sharp increases in economic downturns in manufacturing. 

The sharp increases in economic downturns are only partially

offset by mild decreases in the nonproduction labor share at the

beginning stages of recovery (e.g., 1976 and 1984).  Third, the

pronounced countercyclicality of the nonproduction labor share

change is primarily a within plant phenomenon.  Fourth, the most

pronounced positive increases in the nonproduction labor share

are concentrated in the 1979 to 1982 period. 

The lower panel of Figure 3 depicts the equivalent

decomposition but uses the ratio of nonproduction worker wages to

total wages as the measure of the nonproduction labor share.  The

results for the cost-share measure are very similar to the

employment-share measure.  The volatility of the cost-share based

variable is somewhat higher than the employment-share based

measure but the time series patterns are virtually identical. 

Again, the within plant component of the nonproduction labor

share changes dominate the overall changes.  The pronounced

countercyclicality and the key role that the 1979-82 period play

remain evident.   



     23  The precise formulas for these persistence measures are presented in
Appendix A.
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One obvious explanation for the countercyclicality of the

nonproduction labor share change is the well known result that

production worker employment is more cyclically sensitive than

nonproduction worker employment.  As discussed in section II.D,

higher labor adjustment costs for nonproduction workers are

likely to be relevant in this context even though we are using

annual data.  While this may be part of the explanation, it is

far from the complete explanation of the countercyclicality. 

This is already evident from the asymmetry in the changes in the

nonproduction labor share over the cycle.  To investigate the

importance of transitory changes in the nonproduction labor share

more directly, we compute persistence rates for the annual within

plant nonproduction labor share changes for one, two and three

year horizons.  The persistence rate for an individual plant over

a one year horizon represents the fraction of the change from

year t-1 to t that remains in year t+1.23  The two and three year

persistent measures are defined accordingly although we require

the two year (three year) measure to be less than or equal to the

one (two) year measure.

The average (across plants) annual one, two and three year

persistence rates for the employment based nonproduction labor

share changes are depicted in the top panel of Figure 4.  About

60 percent of the plant-level changes persist for one year, about

45 percent persist for 2 years and about 40 percent persist for 3

years.  Further, the persistence rates are relatively stable over

time and do not exhibit any systematic cyclical pattern. These

high and relatively stable plant-level persistence rates imply

that a large fraction of the overall within plant changes

reflects relatively permanent changes in the nonproduction labor

share at the plant.  The lower panel of Figure 4 depicts the one,



     24  These are generated by calculating the persistence rate at the plant
level for each year and then multiplying the persistence rate by the within
plant change.  The plant-level persistent components are then aggregated using
the relevant employment shares.  Thus, these measures reflect the persistent
components of the first term in the decomposition in (2).
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two and three year persistent components of the employment-

weighted, within plant, nonproduction labor share changes.24  The

important result that emerges is that the persistent component of

the within plant changes exhibits pronounced countercyclicality. 

This result indicates that the countercyclicality of the within

plant changes does not simply reflect the within plant shedding

of production workers in recessions and then the same plant

hiring production workers back in the recovery. 

Even though the persistent component of the within plant

changes is concentrated in downturns, the degree to which this is

true varies across business cycle episodes.  In the lower panel

of Figure 4, the fraction of the large positive spikes in the

within plant changes that persists is greater in the early 1980s

than in the mid 1970s recession.  This is consistent with the

intercensal analysis which indicates that most of the long run

changes over the 1970s and 1980s are concentrated in the 1977-82

period. 

B.  Job Creation and Destruction, by Worker Type

In this section, we examine job creation and job destruction

by worker type.  By job creation for a specific worker type, we

mean the aggregate employment gains for the worker type by plants

that are expanding employment of that worker type.  Similarly, by

job destruction, we mean the aggregate employment losses for the

worker type by plants that are contracting the employment of that

worker type.  We convert these measures to rates by dividing the

relevant flow by the average aggregate employment for that worker



     25  Precise formulas for our measures of job creation and destruction are
presented in Appendix A.  Using the average of employment in the current and
prior period is consistent with the methodology used by Davis, Haltiwanger and
Schuh (1996).  See the latter for motivation and further discussion.

     26  Unlike other measures reported here (e.g., those in Table 1) using
the entire ASM sample, we are able to report job flows for all years.  For
this purpose, we exploit the methodology developed by Davis, Haltiwanger and
Schuh (1996) to construct job flows for the first years of each ASM panel.
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type for the prior and current period.25  While the between plant

job flows based on total plant-level employment have been studied

extensively in the recent literature, there has been comparably

little analysis of the job flows by worker type.  For current

purposes, the latter flows underlie not only the between plant

total employment flows but also the within plant changes in the

nonproduction labor share. 

Table 3 presents the job creation and destruction rates by

worker type at annual and five year frequencies.  The rates for

the annual flows are reported for the entire ASM sample (for all

years) and for the balanced panel of plants.26  The rates for the

five year changes are based on the Census of Manufactures.  Some

key correlations and other summary statistics are reported for

the annual tabulations in Table 4.  Somewhat surprisingly, the

rates of job creation and destruction for nonproduction workers

are roughly on the same order of magnitude as the equivalent

rates for production workers.  This finding holds at both annual

and five year frequencies.  While the magnitudes of the rates are

very similar, the magnitudes of the time series volatility are

quite different across worker types.  At an annual frequency, the

time series standard deviations for both creation and destruction

are substantially higher for production than nonproduction

workers.  For both worker types, job creation is procyclical, job

destruction is countercyclical, the variance of job destruction

is about twice that of creation, and the job reallocation (for

the specific worker type) is countercyclical.  Thus, the well



     27 Though we do not present the detailed analysis herein, we also examined
the time series patterns of the persistence rates for job creation and job
destruction for both production and nonproduction workers.  Our basic finding
is that the persistence rates are not strongly correlated with the cycle but
are especially high in the 1980s.  Accordingly, the high persistence rates in
the 1980s underlie the especially high persistent component of the
nonproduction labor share changes in the early 1980s.  

     28 It is important to avoid confusing the between/within nonproduction labor
share decomposition components with between and within plant job reallocation. 
A plant can exhibit large within plant changes in the nonproduction labor
share with no within plant job reallocation.  Similarly, a plant can
contribute significantly to between plant reallocation via a large change in
total employment while making no contribution to the overall change in the
nonproduction labor share (e.g., if the plant has the average nonproduction
labor share and makes no change in the nonproduction labor share).
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known cyclical properties of job creation and destruction for

total employment hold for both production and nonproduction

worker employment.  In addition, the average persistence rates

(constructed in an analogous manner to the persistence rates for

the nonproduction labor share changes -- see Appendix A) reported

in Table 4 indicate that the job creation and destruction

patterns largely reflect permanent changes.  The persistent job

flow dynamics underlie the persistent nonproduction labor share

changes depicted in Figure 4.27

Within vs. Between Plant Job Reallocation

Decomposing job flows by worker type permits evaluating the

contribution of within plant job reallocation to nonproduction

labor share changes.28  That is, the extent to which

nonproduction labor share changes are undertaken via the

simultaneous increase in employment of one worker type and the

decrease in employment of the other worker type within the same

plant.  Within plant job reallocation can be measured directly at

the individual plant level by summing the job creation and

destruction of both worker types and then subtracting the

absolute value of the net change in total employment at the

plant.  Along with a measure of between plant job reallocation



     29  Between plant job reallocation is the job reallocation measure used
in Davis and Haltiwanger (1992).  For the purposes of constructing measures of
between, within and total reallocation, creation and destruction for all
worker types and total employment are measured as a fraction of total
employment (again, using the average of the current and prior period).  See
Appendix A for precise definition of these measures.

     30  While we do not report the details of the results, we have also examined
the cyclical behavior of within plant job reallocation.  Unlike the strongly
countercyclical between plant job reallocation, the annual within plant
reallocation is essentially acyclical.  The acyclical nature of within plant
job reallocation implies that it plays little role in the cyclical volatility
of nonproduction labor share changes.
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(the sum of creation and destruction using total plant-level

employment), total job reallocation is simply the sum of between

and within plant job reallocation.29

Table 5 presents estimates of between plant, within plant,

and total job reallocation.  Results are reported at the annual

frequency for the entire ASM sample, our balanced panel and

average intercensal rates from the Census of Manufactures. 

Annual between plant reallocation for 1972-88 is 19.2 percent of

employment, within plant job reallocation is 2.7 percent, and

thus total job reallocation is 21.9 percent.30  Surprisingly, the

relatively modest role for within plant job reallocation also

holds for five year changes.  Plant-level changes that involve

increasing the employment of one worker type and decreasing the

employment of the other worker type are relatively unimportant in

accounting for total job reallocation.

One issue that Table 5 does not directly address is the

importance of within plant job reallocation to changes in the

nonproduction labor share.  Plants can change their worker mix by

either swapping one type of worker for another or by changing the

scale of operations and simultaneously increasing or decreasing

production and nonproduction workers at differential rates.  We

decomposed the change in nonproduction labor share into these two

components -- the percent due to changes in scale and the percent



     31 Of course, plants may be changing scale and swapping workers
simultaneously (e.g., increasing one type of worker, decreasing the other type
and changing scale simultaneously).  Our calculations on the contribution of
swapping and scale changes are thus based upon the following decomposition. 
For plants with employment changes of both worker types in the same direction,
the swapping component is equal to zero.  For plants with employment changes
of each worker type in opposite directions, the swapping component is equal to
the fraction of the within plant change due to pure swapping effects.  The
latter is calculated at the plant level from the minimum absolute value of the
two employment changes.

     32  The small contribution of within plant swapping of one worker type for
another also implies that the within plant changes in the nonproduction worker
share that we observe are not associated with simple relabeling of worker
titles within the plant.  
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due to swapping.31  This decomposition shows, that on an

employment weighted basis, about 30 percent of the within plant

change in nonproduction labor share is accounted for by

replacement of one worker type for another (swapping) and 70

percent is accounted for by scale effects.  These results

suggest, to the extent that the nonproduction labor share changes

reflect technology adoption, this typically does not simply

involve the simultaneous shedding of one type of worker and

hiring of the other type of worker but rather is more likely

accompanied by a change in the size of the establishment.32

C.  The Connection Between Long Run Structural Change and

Cyclical Dynamics

In characterizing plant-level changes in the nonproduction

labor share thus far, we have explored both long run changes and

high frequency changes but we have not linked the two together. 

In this section, we consider some simple empirical exercises to

characterize the connection between the long run structural

changes and the cyclical dynamics.

We begin our analysis by examining the heterogeneity in the

long run structural changes across plants.  For this purpose,

plants are divided into four quadrants based upon their long run

changes (from 1972 to 1988) in nonproduction labor share and long



     33 We perform the decomposition in equation (2) in which the unit of
analysis is the aggregated data by quadrant.  The contribution of each
quadrant to the total is given by the sum of the components of each of the
three terms (between, within and covariance) for each quadrant.  Given that we
are using the balanced panel for this exercise, the contribution of net entry
is zero.    
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run changes in their share of manufacturing employment (e.g.,

quadrant I includes plants that increased their nonproduction

labor share and their share of total manufacturing employment). 

For all of the exercises considered in this section we use only

the balanced panel of continuing plants.  Table 6 presents

summary statistics of the long run changes by quadrant.  The last

row of the table characterizes the relative contribution of each

of the quadrants to the total change based upon a modification of

the decomposition given in equation (2).33

Plants that increased both nonproduction labor share and

employment share (quadrant I) accounted for almost all of the

aggregate change by themselves (almost 85 percent).  This result

reflects the large change in nonproduction labor share and the

interaction of the large change in employment share with a high

initial nonproduction labor share.  Plants that increased

nonproduction labor share but decreased employment share

(quadrant II) accounted for another 52 percent of the aggregate

change. Even though quadrant II plants exhibit almost the same

nonproduction labor share increase as quadrant I plants, quadrant

II plants contribute less to the total because of the negative

covariance (rising nonproduction labor share but falling

employment share).  Quadrants I and II together account for more

than the total increase as their contribution is offset by plants

that decreased their nonproduction labor share (quadrants III and

IV).  Quadrant IV's negative contribution is muted somewhat since

it exhibited a large increase in employment share along with a

relatively high initial nonproduction labor share.  The sharply

different patterns across quadrants along with the nontrivial



35

fraction of employment in each of the quadrants highlights the

tremendous heterogeneity in the nonproduction labor share changes

and in the covariation between nonproduction labor share changes

and changes in employment share.  The finding of large scale

changes (measured in terms of employment) that accompany

nonproduction labor share changes helps account for the low

contribution of within plant job reallocation to total

reallocation reported in the previous subsection.    

A primary motive for examining the behavior by quadrants is

to understand the connection between the long run changes

exhibited by an individual plant and the cyclical patterns of the

nonproduction labor share changes for the plant.  Figure 5

depicts the annual nonproduction labor share changes and

employment share changes for plants in each of the quadrants.  A

striking feature of this figure is that quadrant I plants have

positive nonproduction labor share changes in 15 of the 16 years

and positive employment share increases in all years.  Even with

this remarkable upward consistency, quadrant I plants exhibit a

pronounced countercyclicality in their nonproduction labor share

changes.  While there are some rough similarities in the cyclical

patterns of the nonproduction labor share changes across

quadrants, the experience in the early 1980s recession and

subsequent recovery is very different across quadrants. 

Quadrants I and II concentrated much of their long run increase

in the nonproduction labor share in the early 1980s recession. 

In contrast, quadrants III and IV concentrated much of their

decrease in the nonproduction labor share in the post-1982

period.  Since there are distinct groups of plants accounting for

the upward vs. the downward movements and the different groups

exhibit different cyclical patterns, these results reinforce the

conclusion that the observed countercyclicality of the changes in

the nonproduction labor share are not driven simply by plants



     34  In evaluating these high rates, it must be emphasized that these rates
(continued...)
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shedding production workers in recessions and then the same

plants rehiring production workers in booms.

The different cyclical patterns across quadrants prompt us

to look even deeper at the nature of the nonproduction labor

share job dynamics across quadrants.  Figure 6 depicts job

creation and destruction rates by worker types across quadrants. 

Summary statistics for these job flows are reported in Table 7.

The magnitudes and cyclical dynamics of the job flows vary

dramatically across quadrants.  In quadrant I, on average, job

creation for both production and nonproduction workers

substantially exceeds job destruction.  The substantial increase

in the nonproduction labor share and employment share in quadrant

I is generated by very high rates of job creation for both types

of workers with especially high rates for nonproduction workers. 

The volatility of destruction is about the same as that for

creation for production workers in quadrant I and for

nonproduction workers there is actually greater relative

volatility of creation.  In quadrant II, the picture is almost

reversed.  The substantial increase in the nonproduction labor

share (and the accompanying decrease in the employment share) is

generated by very high rates of job destruction for both worker

types with especially high job destruction rates for production

workers.  The job destruction for both types of workers and

especially production workers is concentrated in the early 1980s

and overall there is much greater volatility of destruction as

compared to creation.  In quadrant III, the decrease in the

nonproduction labor share and accompanying decrease in employment

share is accounted for by high rates of job destruction for both

worker types and enormous rates of job destruction for

nonproduction workers in the 1980s.34  Quadrant III also exhibits



     34(...continued)
are based on the balanced panel.  Recall from Table 3 that the balanced panel
exhibits substantially lower rates of creation and destruction than the entire
ASM panel.  Thus, the rates of job destruction of nonproduction workers for
quadrant III in the 1980s are astoundingly high.
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a pronounced asymmetry in the cyclical volatility of destruction

relative to creation.  In quadrant IV, the decrease in the

nonproduction labor share and the accompanying increase in

employment share is generated by high rates of job creation for

both worker types and especially high job creation rates for

production workers.  The volatility of creation and destruction

are about the same in quadrant IV.   Overall, then, two distinct

patterns emerge.  First, we see that the long run changes in the

nonproduction labor share are largely driven by individual plants

increasing or decreasing both types of workers.  Second,  the

overall cyclical asymmetry in the volatility of job creation and

destruction  (i.e., job destruction is more volatile than creation) is

mostly driven by long run downsizers.  For long run upsizing plants, the

volatility of creation is about the same as the volatility of

destruction. 

D.  Putting the Pieces Together

Decomposing the aggregate changes in the nonproduction labor share
reveals that the cyclical patterns are dominated by within plant changes
in the nonproduction labor share.  Several aspects of the results point
towards an important component of the latter reflecting permanent
reorganizations of plant-level workforces being concentrated in
downturns rather than the alternative hypothesis that the cyclical
nonproduction labor share changes reflect a short run nonhomotheticity
given greater cyclical flexibility of production worker employment. 
First, the changes are asymmetric over the cycle.  Second, a large
fraction of the increases in the nonproduction labor share in downturns
reflect persistent changes in the within plant component of the
aggregate change in the nonproduction labor share.  Third, plants with a
long run increase in the nonproduction labor share concentrated their
increase in the recession of the early 1980s.  In contrast, plants with



     35  First ASM panel years, 1974, 1979 and 1984, are excluded from the
tabulations used in constructing this figure because of panel rotation.  Note
that the distribution for the balanced panel looks essentially the same as the
top panel, as does the distribution of annual nonproduction labor share
changes measured by the share of nonproduction worker wages divided by total
wages.

     36  The spike at zero is the fraction of employment with nonproduction
labor share changes less than 0.005 in absolute value.
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a long run decrease in the nonproduction labor share concentrated their
decrease after 1982.

VI.  The Concentration and Timing of Plant-Level Changes in
Nonproduction Labor Share

A.  The Distribution of Plant-Level Changes in the Nonproduction Labor

Share

Lumpy technology adoption models (like those discussed in section

II) along with skill biased technological adoption imply that plants

will experience large, abrupt changes in their nonproduction labor share

in periods when they retool and reorganize their production process.  To

begin examining this hypothesis, the top panel of Figure 7 plots the

distribution of annual plant-level changes in the nonproduction labor

share for all plants in the ASM from 1972-88 who have non-zero

employment in adjacent years.35  The distribution is weighted by total

employment at the plant in the initial year of each change so that each

bar represents the fraction of employment in the pooled plant-year

observations with a given nonproduction labor share change.  Summary

statistics for the distribution are reported in appendix Table A.1. 

There are three striking features of this figure.  First, there is a

very large spike at zero.36  Plants with essentially no change in the

nonproduction labor share in a given year constitute about 23 percent of

employment.  Second, while the distribution is slightly skewed to the

right, reflecting the overall increase in the nonproduction labor share
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over this time period, there is tremendous heterogeneity in the

distribution of nonproduction labor share changes.  The relatively small

mean annual change (0.0048) is generated by large annual positive gross

changes (average equals 0.0231) in the nonproduction labor share by one

group of plants and simultaneously large annual negative gross changes

(average equals -0.0183) in the nonproduction labor share by another

group of plants.  Third, the distribution exhibits fat tails (excess

kurtosis is very high -- see Table A.1) and the fat tails account for

most of the gross changes.  Plants with positive nonproduction labor

share changes in excess of 0.05 (evaluated at the average nonproduction

labor share this constitutes almost a 20 percent change) in a given year

account for more than 70 percent of the overall aggregate positive

nonproduction labor share change, while plants with a negative

nonproduction labor share change of less than -0.05 account for more

than 70 percent of the overall negative nonproduction labor share

change.

The lower panel of Figure 7 depicts the distribution of long

differences in the plant-level nonproduction labor share for all plants

with positive employment in both the 1972 and 1987 Census of

Manufactures.  Not surprisingly, a much smaller percent of employment is

found in plants with little or no change in the nonproduction labor

share (about 6 percent).  The most striking feature again is the

important role of both positive and negative changes in accounting for

the overall change.

One possible explanation for the changes in the nonproduction

labor shares, and in particular the large negative tails observed in

both panels in Figure 7, is that firms are shifting their nonproduction

employment between their manufacturing facilities and into central

administrative offices (CAOs). We explore this possibility by examining

changes in nonproduction employment in both the manufacturing facilities



     37 The analysis we undertake examines all multi-plant firms.  Note, that the
vast majority of manufacturing establishments are single plant operations with
no separate headquarters facilities.  In addition, most multi-plant operations
also do not have separate headquarter facilities. Roughly, 90 percent of all
manufacturing establishments are owned by firms with no CAOs. However, those
firms with CAOs are quite large and account for approximately 55 percent of
total manufacturing employment over the 1977 to 1987 period. 
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and CAOs of the same firms.37  Overall, there is a negative, but quite

weak, correlation between changes in nonproduction labor share in

manufacturing facilities and the change in employment share of CAOs (-

.06).  In addition, we examine whether firms with large negative changes

(less than -.05) in nonproduction labor share in their manufacturing

facilities had large offsetting increases in CAO employment.  If one

factors in the change in CAO employment into the overall change in

nonproduction labor share for firms experiencing large declines in

nonproduction labor share, the impact on the overall change is quite

modest (the employment-weighted average decline for such firms is -0.12

without the CAO change and -0.09 with the CAO change).  Our conclusion

is that the large negative change in nonproduction labor share cannot be

accounted for by firms simply shifting nonproduction labor from

manufacturing facilities to CAOs.

B.  The Timing of Large Plant-Level Nonproduction Labor Share Changes

While the findings depicted in Figure 7 are consistent with lumpy

adoption models, there are a number of alternative explanations for this

lumpiness.  As discussed in section II, fixed costs of adoption and

lumpy technological improvements are two (not mutually exclusive)

possible explanations.  Yet another explanation is an extreme form of

short run nonhomotheticity associated with plants with large changes in

the scale of operations (induced by factors other than changes in

technology).  One way to help distinguish among these hypotheses is to

examine the timing of large scale changes in the nonproduction labor



     38  These threshold values for spikes are arbitrary but from Figure 7
clearly represent very large changes relative to the typical change.  We have
considered alternative thresholds (0.03 and 0.10) and have obtained very
similar results for the hazards.
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share at the plant.  As discussed in section II, one prediction of lumpy

technology adjustment models based upon a vintage capital specification

is that the probability of retooling should be increasing in the time

since the last retooling.  We investigate this prediction in an indirect

manner by examining whether the probability of having a large

nonproduction labor share change is increasing in the time since the

last large nonproduction labor share change.  

For this purpose, we divide plants into two groups in a manner

similar to our quadrant analysis in section V.  Plants with long run

increases in the nonproduction labor share are in one group and plants

with long run decreases in the nonproduction labor share are in the

second group.  The motivation for this grouping is that plants with

positive long run changes in the nonproduction labor share likely

adopted different types of technology than plants with negative long run

changes.  For plants with positive long run changes, we define a

nonproduction labor share spike to be equal to one (zero otherwise) in

any year in which the change in the nonproduction labor share exceeds

0.05.  For plants with negative long run changes, we define a

nonproduction labor share spike to be equal to one (zero otherwise) in

any year in which the change in the nonproduction labor share is less

than -0.05.38

We estimate variants of the following simple specification:

where hit = 1 (=0) if plant i has (does not have) a nonproduction labor

share spike in period t, "i represents a possible plant-fixed effect,



     39 The use of this downstream demand cyclical indicator is motivated by
the arguments made by Shea (1993) that downstream demand is arguably a good
instrument for industry-level demand variation. Of course, as Shea argues, the
downstream demand indicator is a better exogenous instrument when the material
share of the output from the upstream industry in the total costs of the
downstream industry is relatively low.
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Dkit represent "age" dummies reflecting the number of years since the

prior nonproduction labor share spike (e.g., Dkit =1  if the plant last

had a nonproduction labor share spike k years ago, zero otherwise), and

CYCit represents a cyclical indicator. The indicator we use for this

purpose is a downstream demand indicator specific to the four-digit

industry to which the plant is assigned (this measure is developed in

Bartelsman, Caballero, and Lyons, 1994).  The downstream indicator is

the change in an index of activity of other industries and service

sectors which purchase output from the industry in question.39  

We consider two alternative specifications of (3).  First, we

estimate (3) via OLS without any fixed effects.  We denote the results

from this estimation as the Kaplan-Meir estimates since, in the absence

of controlling for the cyclical indicator, the coefficients on the age

dummies reflect the simple empirical hazard.  Second, we attempt to

control for unobserved heterogeneity that lead some plants to have

systematically high probabilities of spikes while others have low

probabilities of spikes.  We do this because failure to control for such

systematic unobserved heterogeneity will bias the hazard downwards.  One

method of addressing this problem is to estimate a first difference

specification of (3) in order to eliminate fixed effects.  However, by

taking first differences, we induce a correlation between the difference

of the age dummies and the difference in the errors.  To overcome this

problem, we estimate the first difference specification with

instrumental variables where we use twice (and greater) lagged dependent



     40  In addition to the twice (and greater) lagged dependent variables the
instrument list includes twice lagged capital growth (equipment and
structures), output growth, indicators of changes in ownership and industry,
and the downstream industry demand indicator.  The capital and output growth
are interacted with two digit industry dummies.
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variables and other twice (and greater) lagged plant-specific variables

as instruments.40 

For this purpose, we exploit the balanced panel data from 1972-88. 

In order to construct the age dummies for several periods, we commence

the estimation of (3) in 1978 and consider the variation across 5 age

groups.  Specifically, the groups are plants that last had a large

nonproduction labor share change in the prior year (age=1), two years

prior (age=2), three years prior (age=3), four years prior (age=4) and

five or more years prior (age=5 -- the omitted group in the estimation). 

For plants with positive long run nonproduction labor share changes, the

average number of spikes is 1.75.  The equivalent mean for plants with

long run negative nonproduction labor share changes is 1.70.

The results from this estimation are reported in the panels of

Table 8 and the hazards for plants with long run positive nonproduction

labor share changes are depicted in Figure 8.  In the latter, the line

labeled "boom" reflects the hazard that results by allowing the

industry-specific cyclical indicator to be one standard deviation above

its mean for each plant and then averaging across plants.  The line

labeled "recession" is the equivalent one standard negative deviation

case.  For the Kaplan-Meir estimates, the estimation yields not only the

slope and cyclical sensitivity but also the appropriate level (the

intercept) for the hazard.  For the first difference specification, we

obtain only the slope and cyclical sensitivity so some caution needs to

be used in comparing the results.

The results for both the positive and negative long run changes

are qualitatively similar so we focus our discussion on the positive



     41 Although the results for plants with negative long run nonproduction
labor share changes indicate that the latter plants do not concentrate their
changes in recessions.  Based upon the magnitudes of the coefficients on the
cyclical indicator, the procyclicality of the latter group is less strong than
the countercyclicality of the plants with long run positive changes in the
nonproduction labor share. 
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long run changes.  For the Kaplan-Meir estimates, we observe a hazard

that rises initially but ultimately decreases.  Although the slope is

not steep, the first difference hazards are upward sloping throughout. 

Thus, even this crude control for selection effects yield results that

are qualitatively consistent with the prediction of an increasing hazard

in a lumpy adjustment model.  Plants are more likely to experience a

large positive spike in their nonproduction labor share the longer it

has been since the prior positive spike.

The results also indicate that positive spikes in the

nonproduction labor share are countercyclical.  This finding echoes the

results reported in the previous sections regarding the pronounced

countercyclicality of within plant nonproduction labor share changes. 

The additional result here is that this countercyclicality is driven in

part by the countercyclicality of spikes in the nonproduction labor

share.  

The large spike at zero in the distribution of nonproduction labor

share changes, the fat tails of the distribution, and the rising hazard,

are all consistent with lumpy adjustment models.  Further, the

countercyclicality of the positive nonproduction labor share spikes is

consistent with the idea that recessions may be good times to reorganize

and retool since the opportunity cost of foregone output is low at such

times.41  Nevertheless, these results on the distribution of

nonproduction labor share changes raise a variety of questions.  The

large positive and negative gross changes in the nonproduction labor

share that are dominated by large (absolute) spikes in the nonproduction

labor share raises questions about the nature of bias in technical



     42  We explore this idea further in section VII when we look directly at the
effect of different types of plant-level technology adoption on the
nonproduction labor share in the plant.  See Dunne and Troske (1995) for
further evidence on this issue.
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change.  One obvious specific question is: What is occurring at plants

experiencing large decreases in their nonproduction labor share?  One

possible explanation is that the technology-skill complementarity varies

(in sign and magnitude) across different types of technologies.  If

technology that is primarily used in production is complementary with

unskilled workers then plants which adopt this type of technology will

decrease their nonproduction labor share.42   The challenge, then, is to

find observable plant-level variables that can account for both the left

and right tails of the distribution of nonproduction labor share

changes.  We turn to this challenge in the next section.  

VII.  The Relationship Between Observable Measures of Technology

Adoption and the Nonproduction Labor Share

We now turn to investigating the connection between observable

measures of technology adoption and changes in the nonproduction labor

share at the plant level.  Our empirical methodology is similar in

spirit to Bartel and Lichtenberg (1987) and Berman, Bound, and Griliches

(1994).  We start by assuming that firms minimize a cost function that

contains both variable and quasi-fixed inputs.  In our case, we specify

a translog cost function with two variable factors of production

(skilled and unskilled workers) and a number of possible quasi-fixed

factors.  Applying Shepherd's Lemma and taking first differences yields:



     43  This specification is formally derived in Brown and Christensen
(1981) and Bartel and Lichtenberg (1987) amongst others.  Note also, that
equation (4) closely resembles the relative factor demand equation (equation.
(1)) derived in section II.  
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where in this case Mit is measured as the share of nonproduction workers

wages in the total wage bill for plant i in period t.43  The Zijt's

include the quasi-fixed factors.  Real output, Yit, is included to

capture possible nonhomotheticity. "t captures a common time effect such

as the common unobserved component of the bias in technological change

and ,it captures unobserved idiosyncratic biased technical change

(including unobservable Zijt's).  For a particular quasi-fixed factor Z,

the coefficient on the Z represents the Z-skill complementarity.  In

what follows, we estimate (4) using both the change in the cost-share

based measure of the nonproduction labor share and the change in the

employment-share based measure of the nonproduction labor share as the

dependent variable.  While the latter does not emerge from the translog

cost functional, it is consistent with the general form of the

nonproduction labor share characterized in equation (1).

There are a number of issues that must be addressed before

estimating the model.  First, we must determine the variables in Zijt. 

In all of our specifications, Zijt includes plant-level log of capital

equipment (beginning of period) and log of capital structures (beginning

of period).  In an attempt to capture any change in organizational

structure, we also control for whether the plant changes ownership or

industry in the period in question.  In some specifications, we include

a firm-level measure of the log of the stock of R&D as well as direct

plant-level measures of the type of technology adopted at the plant from

the 1988 Survey of Manufacturing Technology.  In both of the latter

cases, inclusion of such variables restricts the sample and/or the time



     44  The details of the construction of these variables is discussed in
Appendix A.

     45  Since our specification is in first differences, this is really the
innovation to the current shock.
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period of the analysis in important ways (details below) and thus these

variables are not included in all specifications.44

A second issue is the treatment of relative wages.  There is

likely little directly measurable exogenous cross sectional variation in

relative wages that we can exploit for this purpose.  The problem is

that wage changes for a given worker type are confounded with unobserved

labor quality differences.  Extensive analysis of the plant-level wage

variation (e.g., Davis and Haltiwanger, 1991; Troske, 1994; Doms, Dunne

and Troske, 1995) indicates that much of the between and within plant

wage variation by worker type reflects differences in labor quality

between and within plants.  Even though we cannot directly measure

changes in relative wages, to the extent that relative wages for skilled

workers are equalized across the economy, such economy wide variation in

relative wages will be captured through our time effects.  We attempt to

improve upon this by interacting the time effects with region dummies. 

The region-time effects are included in all of the specifications

discussed below.

A third issue is endogeneity bias for the various measures of the

Zijt's.  Abstracting from measurement error for the moment, the error

term in (4) reflects the current period idiosyncratic shock to biased

technological change.45  This shock is likely to be correlated with the

current growth rate of output so there are clear endogeneity problems

here.  Since the change in the log of capital in (4) represents the

change from the beginning of the prior period to the beginning of the

current period, at annual frequencies it is reasonable to argue that

last period's investment is not correlated with the current period



     46  The precise instrument list for the difference between t-k and t are
plant level variables dated t-k-1 (and earlier) including linear, quadratic,
cubic and quartics in the log of output, the log of capital equipment, and the
log of capital structures as well as quadratic, cubic and quartic terms in the
growth rates of each of these lagged variables.  The motivation for including
the nonlinear terms is based on the recent literature indicating that plant-
level dynamics in employment and capital exhibits significant nonlinearities
(see, e.g., Caballero, Engel and Haltiwanger, 1995a, 1995b).  We also include
the contemporaneous and lagged downstream cyclical indicator used in section
VI as additional instruments in all specifications.  For alternative
specifications including additional Zijt's (e.g., R&D), the appropriate t-k-1
lags (and earlier) for these additional variables are included as instruments
as well.   
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technology shock.  However, in what follows, we consider not only one

year differences but also three year and long differences (1978 to

1988).  In the latter cases, it is much more likely that the cumulative

changes in the capital stocks are correlated with the cumulative

technology shocks.  

A related issue is measurement error in the Zijt's.  Following

Griliches and Hausman (1986), part of the motivation for considering

three year and long differences is to mitigate the effects of

measurement error (in addition, the longer differences are interesting

in their own right).  However, as just discussed, this in turn generates

problems with endogeneity.  Putting these concerns together, in what

follows we estimate our specifications both via OLS (as a benchmark and

to compare to the results of the recent studies that have used OLS in

related settings -- e.g., Berman, Bound, and Griliches, 1994; Bernard

and Jensen, forthcoming; Goldin and Katz, 1996) and via an instrumental

variables procedure where we treat the changes in equipment, structures

and output as endogenous (as well as other relevant Z measures as

appropriate).  We instrument for these variables using appropriately

lagged plant-level measures. Given our concerns about measurement error

and again following Griliches and Hausman (1986), for the difference

between t-k and t we use plant level variables from period t-k-1 (and

earlier) as instruments.46  In all of our specifications the initial t-k
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is 1978 (e.g., the first one year difference is 1978-1979, the long

difference is 1978 to 1988).  Since much of the within plant changes

occur over the 1978 to 1988 period, we are able to include the most

interesting period of variation in our sample period.  We estimate the

instrumental variables specification via GMM to improve efficiency and

to generate consistent standard errors.  

In all cases we prefer to estimate the model separately for plants

in each two-digit industry.  An obvious advantage of using plant-level

data is the ability to let parameters vary across observable dimensions

of differences in technology such as industry.  Even in the

specifications estimated separately for two-digit industry, we interact

three-digit industry effects with the time effects to capture

differences across industries within two-digit industries. 

A. Base Specification -- The Contribution of Capital-Skill

Complementarity

Table 9 presents estimated coefficients for the pooled OLS and IV-

GMM specifications.  While we ultimately draw our inferences from

results that are estimated separately for plants in each two-digit

industry, we present the results in Table 9 to provide a benchmark for

comparison across alternative specifications and for comparability with

the existing literature.  Several aspects of these results deserve

mention.  First, there is clear evidence of capital-skill

complementarity with the complementarity between skill and equipment

generally stronger than the complementarity between skill and

structures.  Second, the IV-GMM results generally yield higher absolute

magnitudes of coefficients especially in the one year difference

specifications.  This latter finding is consistent with measurement

error in our Zijt’s.  Third, the OLS results yield generally higher

magnitudes of the capital-skill complementarity in the long differences



     47 Our IV approach is much less successful in our long differences
specification than in our one or three year specifications.  This is because,
given the limited time dimension of our data, we are unable to construct
instruments which accurately predict the long run changes in the endogenous
variables.

     48  The industry change and ownership change indicators are much better
predictors of changes in the absolute nonproduction labor share than the
nonproduction labor share itself.  We estimated alternative specifications of
(4) with the same right hand side variables but with the dependent variable
being the absolute change in the nonproduction labor share.  The coefficients
on these two indicators (results not reported) increased substantially in
magnitude and statistical significance.
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as opposed to the one year differences which is again consistent with

measurement error in our right hand side variables.  This pattern is

less pervasive in the IV-GMM results which makes sense if one interprets

the one year differences with IV-GMM as being purged of measurement

error.47  Fourth, we find clear evidence of short run negative non-

homotheticity in the one and three year difference results.  However,

this negative nonhomotheticity diminishes in the longer differences. 

Fifth, the change in ownership and change in industry affiliation

variables exhibit somewhat erratic patterns in these specifications. 

However, in the long run it appears that both events are associated with

increases in the nonproduction labor share.48  Sixth, the low overall R-

squared’s indicate the dominance of unobserved factors in accounting for

the pooled cross-sectional and time series variation.  Given the

inclusion of both year effects and year effects interacted with industry

and region, it is clear that there is tremendous heterogeneity in the

nonproduction labor share changes in a given year across plants in the

same industry or region.  Finally, the results for the employment-share

based specification and the cost-share based specification are

qualitatively very similar.  This pattern holds throughout the remainder

of the subsequent analysis and for the sake of brevity we focus on the

employment-share based results for the remainder of the paper.



     49  Thus, studies based upon aggregate (industry-level) data that constrain
the coefficients to be the same across industries are potentially misleading.
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As we stated above, one advantage of the microeconomic data is

that it allows us to estimate the above model separately for each two-

digit industry.  Table 10 reports these results from the one year

difference specification using IV-GMM.  We report coefficient estimates

as well as the employment-weighted average plant-level growth rates for

net investment and output.  It is evident that there are tremendous

differences across two-digit industries in the nature and magnitude of

the equipment-skill and the structures-skill complementarity and in the

short run nonhomotheticity.  For example, the equipment coefficient

varies from -0.013 in Printing to 0.068 in Instruments.  While the

industries with negative equipment-skill complementarity are imprecisely

estimated, there is nevertheless a wide range of values across

industries.  There are also striking differences in the growth rates of

net investment and output across industries.  Given the large

differences in the coefficients and the large differences in the growth

rates of these variables across industries, there are clearly problems

in using the pooled estimates (which constrain the coefficients to be

the same across industries) to make inferences about the contribution of

the relevant variables to the variation in nonproduction labor share

changes.49 

Our main objective in this exercise is to understand the

contribution of our observable factors to the time series and cross

sectional variation in the within plant changes in the nonproduction

labor share.  For this purpose, we present a simplified version of the

full distribution accounting framework used by Juhn, Murphy and Pierce

(1993).  That is, we decompose the employment-weighted distribution of

nonproduction labor share changes into the changes in the distribution

accounted for by the observables and the changes in the distribution



     50  The relevant employment weights in each year are the initial (prior
year) employment shares.  Thus, this exercise decomposes the within plant
component of equation (2). 

     51 Unlike the decomposition of the mean change or the analogous variance
decomposition, the ordering of the decomposition potentially matters in this
context.  That is, one could start with the contribution of the unobservables
to the 95-5 difference and then consider the marginal contribution of the
observables. 
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accounted for by the unobservables.50  By observables, we mean the

predicted plant-level changes in the nonproduction labor share in each

year based upon all of the explanatory variables except the common year

effect.  By unobservables, we mean the plant-level changes in the

nonproduction labor share in each year accounted for by the estimated

common year effect plus the estimated plant-level residual.  We treat

the estimated common year effect as unobservable since it represents the

unexplained common bias in technological change.  

Decomposing annual employment-weighted mean changes in the

nonproduction labor share simply involves computing the annual

employment-weighted mean change in the nonproduction labor share from

the observables and the annual employment-weighted mean change in the

nonproduction labor share from the unobservables.  However, we expand

the standard mean decomposition (or the standard variance decomposition)

by decomposing the entire distribution of nonproduction labor share

changes into the contribution of the observable and unobservable

factors.  Consider, for example, the decomposition of the difference

between the 95th and 5th percentile of the employment-weighted

nonproduction labor share change distribution.  In a given year, we

measure the contribution of the observables as the difference between

the 95th and 5th percentile of the distribution of plant-level predicted

changes in the nonproduction labor share.  The marginal contribution of

the unobservables is then given by the difference between the actual 95-

5 and predicted 95-5 percentile differences.51    



     52  In examining the precise timing of the contribution of capital-skill
complementarity in Figure 9 it is important to recall that it is beginning of
period capital stock that affects the current period nonproduction labor

(continued...)
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Figure 9 depicts the decomposition of the annual mean changes in

the nonproduction labor share as well as the decompositions of the

annual 95th-5th percentile difference, the annual 95th-50th percentile

difference and the annual 50th-5th percentile difference.  In each case,

we present the statistic from the actual distribution, the contribution

to this statistic by the observables and the marginal contribution to

this statistic by the unobservables.  For the contribution of the

observables, we also present the contribution from the observables minus

the effect of plant-level changes in output.  For this exercise we use

the estimates from the IV-GMM one year difference specification

estimated separately for plants in each two-digit industry.

The upper left panel of Figure 9 depicts the decomposition of the

employment-weighted annual mean nonproduction labor share changes.  Over

the period, observables account for about 40 percent of the average

annual change in the nonproduction labor share.  Excluding the

contribution of plant-level output changes, the capital component of the

observables accounts for about 30 percent of the average annual change.  

While the observables account for a sizeable fraction of the

average annual change, the observables (and in particular capital-skill

complementarity effects) do not track the timing of the nonproduction

labor share changes well.  For example, in 1981 the observables account

for only 27 percent of the sharp increase in the nonproduction labor

share and capital-skill complementarity accounts for only 10 percent of

the increase.  More generally, capital-skill complementarity predicts a

positive nonproduction labor share change in all years and relatively

modest time variation.52 



     52(...continued)
share.  Accordingly, in first differences it is the change in the capital
stock in the prior period that affects the change in the nonproduction labor
share from the prior to the current period.  Thus, for example the equipment
investment boom in 1985 yields an increase in the nonproduction labor share in
1986.
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Changes in output account for some of the cyclical variation in

the nonproduction labor share consistent with short run nonhomotheticity

induced (at least in part) by the greater cyclical flexibility of

production workers.  Nevertheless, unobservable factors dominate the

cyclical variation.  Further, unobservable factors account for most of

the secular increase in the nonproduction labor share.  Putting the two

results together implies that unobservable factors are generating most

of the long run increase in the nonproduction labor share and that the

long run changes generated by these unobservable factors are

concentrated in recessions.  It should not be surprising that capital-

skill complementarity cannot account for these cyclical patterns.  There

is an inherent tension in trying to account for sharp increases in

nonproduction labor share changes in downturns with capital-skill

complementarity since net investment is procyclical. 

Turning now to the decompositions of the percentile differences,

several interesting patterns emerge.  First, the actual 95-5 percentile

difference indicates a secular increase in the dispersion of

nonproduction labor share changes over the 1980s.  This secular increase

is again accounted for entirely by unobservable factors.  In addition to

the secular increase in dispersion, there is an increase in dispersion

in the cyclical downturn in the early 1980s that is again primarily

accounted for by the unobservables.  Looking at the 50-5 and the 95-50

differentials in the nonproduction labor share change distribution shows

that there is a greater secular increase in the dispersion in the left

tail of the distribution (the 50-5 difference) but greater cyclical

volatility in the dispersion in the right tail of the distribution (the



     53 We treat changes in the R&D stock as endogenous in our IV-GMM
specifications.  Once again, we do not report the long difference estimations
because, given our small sample size, we do not feel we can use IV to estimate
the model.
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95-50 difference).  Observables account for very little of either the

secular or cyclical variation in the left tail or the secular change in

the right tail.  However, observables account for a relatively larger

fraction of the cyclical volatility in the right tail. 

B. The Contribution of R&D Investment

We now consider the additional contribution of net changes in the

stock of R&D capital at the plant level.  Essentially, we follow a

methodology similar to that used by Adams and Jaffe (1994) by building

stocks of R&D at the firm-level using a perpetual inventory method

(details discussed in Appendix A).  The firm level R&D stocks are

matched to individual plants using the firm identifiers in our plant-

level data set.  We restrict our sample to those plants for which we

have a continuous series on R&D, which reduces our sample by about 40

percent. 

Table 11 reports the coefficient estimates with the inclusion of

the net investment in R&D for the pooled OLS, IV-GMM and the employment-

weighted, two-digit industry, for the both the one year and three year

difference specifications.53  The results for net investment of

equipment and structures are largely similar to those reported in Tables

9 and 10.  We find evidence of significant R&D-skill complementarity in

the IV-GMM results for both the one and three year difference

specifications.

The decomposition of the employment-weighted nonproduction labor

share distribution into observable and unobservable components when we



     54  The results in Figure 10 are based on the one-year difference IV-GMM
specification estimated separately for plants in each two-digit industry.
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include R&D is presented in Figure 10.54  The results are qualitatively

similar to those presented in Figure 9.  Observables account for 45

percent of the average annual change and observables absent the output

growth effect account for 42 percent of the average annual change. 

Including net R&D investment does not help in accounting for aggregate

cyclical changes in the nonproduction labor share or to the secular

increase in the dispersion in the nonproduction labor share changes. 

This finding is again not surprising given the essentially acyclical

nature of R&D investment.  There is a modest improvement in the

contribution of the observables to the cyclical volatility in dispersion

(especially for the right tail).  In short, however, the main conclusion

of the prior section still holds:  unobservable factors account for most

of the nonproduction labor share increases in cyclical downturns and the

cyclical increases generated by unobservables account for most of the

long run secular increase in the nonproduction labor share.

C. The Contribution of Indicators of Adoption of Advanced Technology

We now consider the influence of direct measures of the type of

technology adopted at the plant.  For this purpose, we exploit the 1988

Survey of Manufacturing Technology (SMT).  As discussed in section III,

the 1988 SMT surveyed 10,590 plants in SIC industries 34 to 38 on their

use of seventeen recent manufacturing innovations.  The innovations

include such technologies as robotics, computers on the factory floor,

local area networks, computer-aided design and automatic sensors.  We

match the data from the SMT with our balanced panel of continuing plants

which results in a sample of 1820 plants.  Following Dunne and Troske

(1995), we divide the technologies into two main groups -- information

technologies including computer automated design (CAD), computers and
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lans, and production technologies including flexible manufacturing

cells, lasers, and pick and place robots.  The distinction between

information technologies and production technologies is that the former

are technologies that aid in the management and design of products and

the production process while the latter aid directly in production.  

Our analysis exploiting the SMT data has a number of important

limitations.  First, we only have the information at one point in time

for our balanced panel (1988).  Thus, we cannot exploit the precise

timing of adoption.  To get around this problem, we use the SMT

variables in the long difference specification and presume that if a

particular technology is present at an individual plant then the

adoption of the technology occurred between 1978 to 1988. Second, we

estimate the specification by OLS and IV-GMM both with and without

instrumenting for technology adoption using the same instrument set as

in the base specification.  Since the need (at least for measurement

error reasons) to instrument in the long difference specification is

limited and because we do not have any reasonable instruments for the

SMT variables, we have more confidence in the OLS results in this case

and focus our discussion on these results.  Third, the results are

restricted to a narrow set of industries (SIC 34 to 38) which restricts

the sample size and the relevance of the analysis for total

manufacturing and makes comparisons to the preceding analyses more

tenuous. 

The results for the long difference specification including the

SMT variables are reported in Table 12.  For both the information and

production technologies, we break plants into two groups based upon

whether the plant is using at least one of the relevant technologies. 

The results for capital-skill-complementarity and nonhomotheticity are

quite similar to those generated in the base case.  We find that

adoption of information technologies yields a positive impact on the



     55The results reported in Table 12 should be viewed with some caution. 
First, the sample of plants is dominated by very large producers and 91
percent of plants in the sample use information technologies.  Second, Doms,
Dunne and Troske (1995), using a larger sample of plants, a more recent SMT,
and employing the number of technologies used as their main index of
technology adoption, find little correlation between technology use in 1993
and the change in nonproduction labor share over the 1977 to 1992 period.  In
results not reported here, we estimated the nonproduction labor share
regression using a count-based measure and found little correlation between
the number of technologies used and the change in nonproduction labor share. 
Finally, Doms, Dunne, and Troske also estimate a model similar to that
reported in Table 12.  They find a negative relationship between production
technology use and the change in nonproduction labor share (as we do), but
find a much weaker positive correlation between information technology use and
changes in nonproduction labor share than we find in our more restricted
sample.  

     56  The employment-weighted aggregate change in the nonproduction labor
share for plants that adopted information technologies is 0.0353 while the
aggregate change for those that have not is 0.0139.  The predicted aggregate
change for those that have adopted information technologies is 0.0319 while
the predicted aggregate change for the other plants is 0.0256.  The
employment-weighted aggregate change in the nonproduction labor share for
plants that adopted advanced production technologies is 0.0333 while the
aggregate change for those that have not is 0.0434.  The predicted aggregate
change for those that have adopted production technologies is 0.0293 while the
predicted aggregate change for the other plants is 0.0461.  Thus, we observe
that on average plants in all four of these groups exhibit substantial

(continued...)
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change in the nonproduction labor share while the adoption of production

technologies generates a negative impact on the change in the

nonproduction labor share.55  Since these results reflect the influence

of the type of technology adopted after already controlling for output

and capital growth, these results do not necessarily imply that plants

that have adopted information technologies exhibit increases in their

nonproduction labor share or that plants that have adopted production

technologies exhibit decreases in the nonproduction labor share. 

Important in this regard is that plants that have adopted either type of

advanced technology generally have much higher net equipment investment

rates.  For example, the employment-weighted mean net investment rate

for plants that have adopted advanced production technologies is 0.48

while plants that have not adopted such technologies have a rate of

0.297 (both rates over the 10 year period).56  



(...continued)
increases in their nonproduction labor share but particularly high changes for
plants that have adopted information technologies and have not adopted
production technologies.
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In terms of the contribution of the observables to the long run

nonproduction labor share change, in a manner consistent with our above

annual analysis we treat the constant as an unobservable.  The actual

employment-weighted average nonproduction labor share change for the

1820 plants over the 1978-88 period is .035.  The predicted change in

nonproduction labor share when we include our SMT variables is .017, so

the observables account for about one-half of the change in the

nonproduction labor share in this sample of plants.  However, even after

controlling for whether or not a plant adopts new technologies,

unobservables still account for 50 percent of the secular employment-

weighted average change in the nonproduction labor share.  

VIII.  Concluding Remarks

Our main empirical findings are summarized as follows:

1.  Aggregate changes in the nonproduction labor share at both

annual and longer frequencies are dominated by within plant changes in

the nonproduction labor share.  The contribution of between plant

changes in the nonproduction labor share is relatively modest peaking

(around 25 percent) in the 1977-82 period.  Net entry reinforces the

effects of the within plant changes since the nonproduction labor share

differential between entering and exiting plants is similar to the

within plant changes in the nonproduction labor share that we observe

for continuing plants.  Taken together, the contribution of within plant

changes and net entry jointly account for more than 80 percent of the

long run change in the nonproduction labor share. 
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2.  The distribution of annual within plant changes exhibits a

spike at zero, tremendous heterogeneity and fat left and right tails.

The aggregate net change in the nonproduction labor share is driven by

large gross positive and negative changes in the nonproduction labor

share that are an order of magnitude larger than the net change.  Most

of the large gross changes are accounted for by plants with very large

(in excess of .05 in absolute value annually) lumpy changes.  The

probability of a plant experiencing a large change in the nonproduction

labor share is increasing in the time since the previous large change in

the nonproduction labor share.

3.  Within plant job reallocation is small in magnitude and

accounts for only a small fraction of total job reallocation (between

plus within plant job reallocation).  Additionally, most changes in the

within plant nonproduction labor share are driven by individual plants

either simultaneously increasing both skilled and unskilled workers or

simultaneously decreasing both types of workers.  Annually, the rate of

within plant job reallocation is only 2.7 percent.  This compares to a

between plant job reallocation rate of about 20 percent.  Most changes

in within plant nonproduction worker shares are accounted for by plants

changing scale but disproportionately via employment of one type of

worker.  Plants that exhibit long run secular increases in the

nonproduction labor share accomplished through long run upsizing account

for most of the long run secular increase in the nonproduction labor

share.  This group of plants accomplish this with large rates of job

creation for both skilled and unskilled workers and especially high

rates of job creation for skilled workers.  Another group of plants that

increase their nonproduction labor share through long run downsizing

also contribute significantly to the long run secular increase in the

nonproduction labor share.  This latter group of plants accomplish this
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with high rates of job destruction for both worker types and especially

high job destruction rates for unskilled workers.

4.  The long run secular increases in the nonproduction labor

share are concentrated in recessions, particularly the recession in the

early 1980s.  The aggregate nonproduction labor share rises sharply in

economic downturns and falls only mildly in economic recoveries.  The

persistent component of within plant nonproduction labor share changes

increases sharply in recessions.  Plants with long run increases in

their nonproduction labor share concentrated much of their increase in

the recession in the early 1980s.  Plants with long run decreases in the

nonproduction labor share account concentrated much of their decrease

after 1982.  

5.  Observable indicators of changes in technology account for a

significant fraction of the long run secular increase in the average

nonproduction labor share but account for little of the cyclical

variation.  Unobservable factors account for most of the long run

secular increase and the changes generated by these unobservable factors

account for most of the cyclical variation in the aggregate

nonproduction labor share.  Putting these results together, the factors

that are generating the long run secular increase in the nonproduction

labor share are closely linked to the factors generating the cyclical

increases in the nonproduction labor share in economic downturns. 

Capital-skill complementarity (including detailed measures of the type

of advanced technologies adopted) and R&D-skill complementarity

contribute significantly to the employment-weighted average secular

change in the nonproduction labor share.  However, capital investment

and R&D investment account for little of the cyclical variation in the

average within plant nonproduction labor share changes.  Even after

controlling for plant-level net investment of physical capital, net

investment in R&D capital and output growth, the residual average within
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plant changes in the nonproduction labor share exhibit significant

countercyclicality.  Further, the increases in the average within plant

nonproduction labor share generated by unobservable factors in downturns

are much larger than the modest decreases in recoveries, so that the

cumulative effect is positive.  Indeed, more than half of the long run

secular increase in the average nonproduction labor share is accounted

for by these unobservables.

These results, in general, point to the conclusion that the

aggregate change in the nonproduction labor share reflects some form of

technical change (broadly defined) inducing individual continuing plants

to retool and reorganize and new more skill intensive plants to displace

exiting less skill intensive plants.  The results are consistent with

models that predict that retooling and reorganization will be lumpy and

that the latter will imply similar lumpiness in nonproduction labor

share changes.  Further, the results are consistent with models that

predict that retooling and reorganization of the workforce will be

concentrated in recessions since the opportunity cost of the disruption

from undertaking retooling/reorganization is low during recessions.

Viewed from the broad perspective of changes in the manufacturing

workforce, our results indicate that there have been striking changes

within individual manufacturing establishments in the type of workers

used at operating production establishments.  While on average the shift

has been towards nonproduction workers, the underlying plant level

changes reflect tremendous heterogeneity in the within plant changes in

the structure of employment.  Our results do not provide much support

for simple product demand and related trade explanations for the change

in the mix of jobs in U.S. manufacturing.  Instead, our results are

consistent with the view that individual plants have fundamentally

changed the way they produce goods in terms of the mix of workers

employed at production establishments.         
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There are, however, more questions raised than answers provided by

our analysis.  The dominant role that unobservable factors play in

accounting for most of the secular and cyclical variation in the

nonproduction labor share raises questions about what these unobservable

factors represent.  In a similar vein, the tremendous heterogeneity in

within plant changes in the nonproduction worker share (with large

positive and negative gross within plant changes) raise questions about

the nature of the bias in technical change.  We have argued that one

label to put on the factors generating these patterns of plant-level

changes is organizational capital.  Viewed from this perspective, our

results indicate that organizational capital has on average been skill

biased over this period and that permanent reorganizations of the

production process at the plant are concentrated in recessions. 

Organizational capital need not be skill biased in general and indeed we

find that unobservable factors account for most of the tremendous cross

sectional variation in plant-level nonproduction labor share changes.

The dominant role of unobservables is not inherently in conflict

with the recent interpretations from related aggregate analyses (e.g.,

Berman, Bound and Griliches, 1994) that the aggregate increase in the

nonproduction labor share reflects skill biased technical change. 

However, our findings suggest that it will be difficult to find

observable indicators of this skill biased technical change that account

for the observed strong connection between the long run structural

changes and cyclical dynamics.  At least it will be difficult to find

observable indicators from measures of investment in new capital goods

(even very detailed indicators of the type of capital investment that

the plant is undertaking) or R&D.  The reason for this is that the

latter indicators are procyclical and we find that the permanent changes

in the nonproduction labor share are countercyclical.



     57  Note, however, that our long difference specifications relating long run
changes in the nonproduction labor share to long run changes in output growth,
physical capital growth and R&D capital growth do not depend on such precise
timing considerations and these results still leave most of the aggregate and
cross-sectional variation in the nonproduction labor share unexplained.
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An alternative but related interpretation of our results is that

we have not fully captured the complex dynamic interactions between

plant-level changes in the nonproduction labor share and plant-level

changes in observable indicators like physical capital and R&D.  For

example, results from Dunne and Troske (1995) indicate that the

probability of adopting advanced information technologies is increasing

in the initial nonproduction labor share of the plant.  We have not

investigated the idea that plants may find it optimal to change their

employment structure prior to changing their technology.57  This latter

possibility suggests that we may need a much richer characterization of

the dynamic interactions of the various components of what constitutes

the organizational structure of the plant.
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Appendix A: Definition of Measures

This appendix provides precise definitions for various measures
used in the paper.
To begin with we define our job creation and destruction measures.

Job Creation by Worker Type

Where:
)Lkit = Change in employment of worker type k at plant i in year t:

(Lk
it - Lk

it-1 )
Xkit = 1/2(Lk

it + Lk
it-1 )

L+ = the set of all plants with )Lk
it $ 0.

A = All plants

Job Destruction by Worker Type

Where:
L- = the set of all plants with )Lk

it < 0.

Job creation and destruction rates for total employment are calculated
by letting Lk

it be the total employment in plant i in year t.
Given these measure of job creation and destruction, between plant

job reallocation is simply the sum of total job creation and
destruction:
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Total job reallocation (both within and between plant) is given by:

Finally, within plant reallocation is given by

Persistence Rate for Nonproduction Labor Share Change

Define:

where 
Mit = Ls

it / (Ls
it + Lu

it )
2mit(0)=1.

2m
i t(k) is the k-year persistence rate for plant i in year t.  Then the k

year persistent component of employment weighted, within plant
nonproduction labor share change is given by:
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Persistence Rate for Job Creation
Define:

where again 2cit(0)=1 and calculated for plants with )Lit>0.  Then the
persistent component of aggregate job creation is given by:

Rates and components for job creation by worker type, for total job
destruction and for job destruction by worker type are defined in an
analogous fashion.

Capital Stock Measures
Our capital stock measure is:

where: 
ksr

it = total stock of type r capital in plant i in period t
*rjt = depreciation rate for type r capital in industry j in period

t (includes retirements).
Irit = Investment in type r capital in plant i in period t.

We construct capital stocks for t=1972 to 1988.  For 1972, ksrit is
computed as:

where:
bksr

i,72 = the book value of type r capital in plant i in 1972
ksr

j,72 =  the real value of type r capital in industry j in 1972
bksr

j,72 = the book value of type r capital in industry j in 1972.



     58 See Dunne (1994) for a more complete description of the 1988 SMT.
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rdkit ' (1&*)(rdkit&1%rdit

The depreciation rate in period t along with the real and book value of
capital for industry j in 1972 come from BEA.  j refers to a two-digit
industry.

R&D Stock Measure
Our R&D stock measure is:

where:
rdkit = the r&d stock of firm i in period t
* = the depreciation rate for r&d
rdit = the investment in r&d by firm i in period t.

We set *=.15  (Adams and Jaffe, 1994).  We compute r&d stocks for t=1972
to 1988.  In 1972 we set rdkit=rdit.  

Technology Adoption Measures
Our plant-level measure of technology adoption come from the 1988

Survey of Manufacturing Technology (SMT).  The 1988 SMT surveyed
managers of over 10,000 plants about their use of 17 different advanced
technologies.58  We merge these data with our sample of continuing
plants to create a sample of 1820 plants.  We then use the information
from the 1988 SMT to construct our two measures of technology adoption:
information, which equals 1 if a plant adopts any of one of eight
information technologies, and production which equals 1 if a plant
adopts any one of six production technologies.  The eight information
technologies are: computer aided design (CAD), CAD controlled machines,
digital CAD, technical data network, factory network, intercompany
network, programmable controllers, computers on the factory floor.  The
eight production technologies are: flexible manufacturing system/cell,
materials working lasers, pick/place robots, other robots automatic
storage/retrieval system, automatic guided vehicle systems, automated
sensor based inspection and/or testing equipment used on incoming or in
process materials, automated sensor based inspection and/or testing
equipment used on final product.  

Changes in Output, Ownership and Industry:
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Change in output is simply the log of the real value of shipments
of plant i in year t minus the log of real value of shipments of plant i
in year t-1.  We deflate the reported value of shipments from the plant
using the four-digit industry shipments deflator in the NBER
productivity database (Bartelsman and Gray, 1995).  In principle, the
appropriate measure to use would be changes in value-added, or at least
changes in shipments minus changes in inventories.  However, given
measurement error problems in the inventories and materials variables in
the LRD and in the materials deflator, we feel that changes in shipments
is the better variable.  Similar arguments are made by Berman, Bound and
Griliches (1994) and Bernard and Jensen (forthcoming) to justify their
use of this variable.  

The change in ownership variable equals one if the firm
identification variable in the LRD changes between year t and year t-1. 
The change in industry variable equals one if a plant’s four-digit SIC
code changes between year t and t-1. 



70

References

Adams, James D. and Adam Jaffe, "The Span of the Effect of R&D in the
Firm and Industry," Center for Economic Studies Discussion Paper
no. 94-7. U.S. Bureau of the Census, Washington D.C., 1994.

Altonji, Joseph G. and James R. Spletzer, "Worker Characteristics, Job
Characteristics and the Receipt of On-the-Job Training,"
Industrial and Labor Relations Review, 45 (1991): 58-79. 

Amirault, Thomas, "Training to Qualify for Jobs and Improve Skills,
1991," Monthly Labor Review, 115 (1995): 31-36.

Andolfatto, David and Glenn M. MacDonald, “Endogenous Technological
Change, Growth, and Aggregate Fluctuations,” mimeo, University of
Rochester (1993).  
 
Bartel, Ann P. and Frank R. Lichtenberg, "The Comparative Advantage of

Educated Workers in Implementing New Technology," Review of
Economics and Statistics, 69 (1987): 1-11.

Bartelsman, Eric J., Ricardo J. Caballero and Richard K. Lyons,
"Customer and Supplier Driven Externalities," American Economic
Review, 34 (1994): 1075-84.

Bartelsman, Eric J. and Wayne Gray, "The NBER Manufacturing Productivity
Database," mimeo, Board of Governors of the Federal Reserve
System, (1995).

Berman, Eli, John Bound, and Zvi Griliches, "Changes in the Demand for
Skilled Labor Within U.S. Manufacturing Industries: Evidence from
the Annual Survey of Manufacturing," Quarterly Journal of
Economics, 109 (1994): 367-398.

Bernard, Andrew B. and J. Bradford Jensen, "Exporters, Skill Upgrading,
and the Wage Gap," Journal of International Economics
(forthcoming).

Berndt, Ernst, Catherine Morrison, and Larry Rosenblum, "High-
Tech Capital Formation and Labor Composition in U.S.
Manufacturing Industries: An Exploratory Analysis," Working
Paper no. 4010, Cambridge, MA: NBER, 1992.

Brown, Randall S. and Lauritis R. Christensen, "Estimating
Elasticities of Substitution in a Model of Partial Static
Equilibrium: An Application to U.S. Agriculture, 1947 to



71

1974," in Ernst R. Berndt and Barry C. Fields (eds.) 
Modeling and Measuring Natural Resource Substitution,
Cambridge, MA: MIT Press, 1981.

Caballero, Ricardo and Mohamad Hammour, "The Cleansing Effects of
Recessions," American Economic Review, 84 (1994): 1356-1368. 

Caballero, Ricardo, Eduardo M. R. A. Engel, and John C.
Haltiwanger, "Aggregate Employment Dynamics: Building from
Microeconomic Evidence," Working Paper no. 5042: Cambridge,
MA: NBER, 1995a.

Caballero, Ricardo, Eduardo M. R. A. Engel, and John C.
Haltiwanger, "Plant Level Adjustment and Aggregate
Investment Dynamics, " Brookings Papers on Economic
Activity, no. 2 (1995b).

Campbell, Jeffrey R. "Entry, Exit, Technology, and Business
Cycles," Rochester Center for Economic Research Working
Paper no. 407. University of Rochester, 1995.

Chari, V.V. and Hugo Hopenhayn, "Vintage Human Capital, Growth,
and the Diffusion of New Technology" Journal of Political
Economy, 99 (1991): 1142-65. 

Cooley, T., J. Greenwood, and M. Yorukglu, "The Replacement
Problem," mimeo, University of Rochester, Rochester, NY,
(1994).

Cooper, Russell and John Haltiwanger, "The Macroeconomic
Implications of Machine Replacement: Theory and Evidence,"
American Economic Review, 83 (1993): 360-82.

Cooper, Russell, John Haltiwanger, and Laura Power, "Machine
Replacement and the Business Cycle: Lumps and Bumps,"
Working Paper no. 5260: Cambridge, MA: NBER, 1995.

Davis, Steven J. and John Haltiwanger, "Gross Job Creation and
Destruction: Microeconomic Evidence and Macroeconomic
Implications," NBER Macroeconomics Annual no. 5 (1990): 123-
68.

Davis, Steve J. and John Haltiwanger, "Wage Dispersion Between
and Within U.S. Manufacturing Plants, 1963-1986," Brookings
Papers on Economic Activity: Microeconomics, (1991): 115-
200.



72

Davis, Steven J. and John Haltiwanger, "Gross Job Creation, Gross
Job Destruction, and Employment Reallocation," Quarterly
Journal of Economics, 107 (1992): 819-63.

Davis, Steven J., John C. Haltiwanger, and Scott Schuh, Job
Creation and Destruction, Cambridge, MA: MIT Press, 1996.

Doms, Mark and Timothy Dunne, "Capital Adjustment Patterns in
Manufacturing Plants,"  mimeo, Center for Economic Studies,
U.S. Bureau of the Census, Washington D.C., 1994.

Doms, Mark, Timothy Dunne, and Kenneth Troske, "Workers, Wages,
and Technology," mimeo, Center for Economic Studies, U.S.
Bureau of the Census, Washington D.C., 1995.

Dunne, Timothy, "Patterns of Technology Usage in U.S.
Manufacturing Plants," The Rand Journal of Economics, 25,
(1994): 488-99.

Dunne, Timothy and James Schmitz Jr., "Wages, Employment
Structure and Employer-Size Wage Premia: Their Relationship
to Advanced-Technology Usage at U.S. Manufacturing
Establishments," Economica 62 (1995): 89-107.

Dunne, Timothy and Kenneth Troske, "Human Capital, Research and
Development Expenditures and the Adoption of New
Technologies," mimeo, Center for Economic Studies, U.S.
Bureau of the Census, Washington D.C., 1995.

Dunne, Timothy, Mark Roberts, and Larry Samuelson, "Plant
Turnover and Gross Employment Flows in the U.S.
Manufacturing Sector," Journal of Labor Economics, 7 (1989):
48-71. 

Goldin, Claudia and Lawrence F. Katz, "The Origins of Capital-
Skill Complementarity," mimeo, Harvard University, 1996.

Griliches, Zvi and Jerry A. Hausman, "Errors in Variables in
Panel Data,"  Journal of Econometrics, 31 (1986): 93-118.

Hall, Robert E. "Labor Demand, Labor Supply, and Employment
Volatility," NBER Macroeconomics Annual no. 6 (1991): 17-47.

Hamermesh, Daniel S., Labor Demand, Princeton, NJ: Princeton
University Press, 1993.

Ichniowski, Casey and Kathryn Shaw, "Old Dogs and New Tricks:
Determinants of the Adoption of Productivity-Enhancing Work



73

Practices," Brookings Papers on Economic Activity:
Microeconomics, (1995): 1-66.

Jovanovic, Boyan and Glenn M. MacDonald, "Competitive Diffusion,"
Journal of Political Economy, 98 (1994): 24-52.

Juhn, Chinhui, Kevin M. Murphy, and Brooks Pierce, "Wage
Inequality and the Rise in the Return to Skill," Journal of
Political Economy, 101 (1993): 410-42.

Juhn, Chinhui, Kevin M. Murphy and Robert H. Topel, "Why Has the
Natural Rate of Unemployment Increased Over Time?" Brookings
Papers on Economic Activity no. 2, (1991): 75-142.  

Katz, Lawrence F. and Kevin Murphy, "Changes in Relative Wages,
1963-1987: Supply and Demand Factors," Quarterly Journal of
Economics, 107 (1992): 1-34.

Kremer, Michael. "The O-Ring Theory of Economic Development," The
Quarterly Journal of Economics, 108 (1993): 551-575.

Lambson, Val E., "Industry Evolution with Sunk Costs and
Uncertain Market Conditions," International Journal of
Industrial Organization, 9 (1991):171-96.

Lynch, Lisa M. and Sandra E. Black, "Beyond the Incidence of
Training: Evidence from a National Employers Survey,"
Working Paper no. 5231. Cambridge, MA: NBER, 1995.

Mortensen, Dale T. and Christopher A. Pissarides, "Job Creation
and Destruction in the Theory of Unemployment," Review of
Economic Studies, 61 (1994): 397-416.

Shea, John, "Do Supply Curves Slope Up?" Quarterly Journal of
Economics, 108 (1993): 1-32.

Solow, Robert M., "Investment and Technical Progress," in Kenneth
Arrow, Samuel Karlin, and Paul Suppes (eds.), Mathematical
Methods in the Social Sciences, 1959, Stanford, CA: Stanford
University Press, 1960.

Troske, Kenneth R. "Evidence on the Employer Size-Wage Premium
from Worker-Establishment Matched Data," Center for Economic
Studies Discussion Paper no. 94-10. U.S. Bureau of the
Census, Washington, D.C., 1994. 



74

Troske, Kenneth R. "The Worker-Establishment Characteristics
Data," Center for Economic Studies Discussion Paper no. 95-
10. U.S. Bureau of the Census, Washington, D.C., 1995. 

U.S. Census Bureau, 1987 Census of Manufactures, General Summary,
MC87-S-1, Washington, D.C.: Government Printing Office,
1991.


